

Constraining the self-coupling of the Higgs boson from non-resonant HH production in the CMS experiment

Kajari Mazumdar, <u>Soumya Mukherjee</u> TIFR, Mumbai (India) On behalf of the CMS collaboration

XXV DAE-BRNS High Energy Physics Symposium 2022

13/12/2022

Higgs pair production in Standard Model

- \rightarrow The shape of the Higgs potential directly related to the λ (self coupling of Higgs boson)
- \rightarrow Non-resonant HH process can give the direct access of trilinear self Higgs coupling (λ_{HHH}) at the LHC

Vector Boson fusion (VBFHH): the sub-lead mode,

at N³LO,
$$\sigma_{VBFHH}$$
 = 1.73 fb [2].

HH search in CMS

 Full Run-2 data analysis from CMS luminosity 139 fb⁻¹ (4 times larger than 2016)

General strategy for bbyy analysis

 \rightarrow Events are triggered by a diphoton trigger of 30 and 18/22 GeV

→ At least 2 photons, with $p_T / m(\gamma \gamma) > 0.33$ (0.25) → Finally diphoton Invariant mass of $100 < m_{\gamma \gamma} < 180$ GeV

 \rightarrow Deep Neural Network (DNN) training used to identify the b-jets from light quark or gluon jets

 \rightarrow Two highest b-tagged $Anti-K_{T}^{}$, cone radius 0.4 (AK4) jets selected within $|\eta|<2.4$ /2.5

 \rightarrow Invariant mass of the b-tag jet pair, 70 < m_{bb} < 190 GeV

 \rightarrow Additionally **b-jet energy regression** applied to improve the **b-jet energy resolution** and **m**_{bb} spectrum.

→ Signal contribution submerged in continuum background, ($\gamma\gamma$ +jets/ γ +jets), due to very small x-sec. → **Boosted Decision Trees (BDT)** used to separate signal from backgrounds depends on kinematic features → Events categorized in **M**_{HH} to probe SM and BSM → Further categorization based on **BDT score** in each M_{HH} region to increase the signal purity and analysis sensitivity

Fitting strategy

→ Signal extracted using a parametric 2D fit of $m_{\gamma\gamma}$ and m_{bb} from each analysis category simultaneously. → HH - Signal and single Higgs background contribution taken from monte carlo simulation by fitting $m_{\gamma\gamma}$ by **multi-gaussian** and m_{bb} by **Double Sided Crystal Ball (DSCB)** function. → Continuum background estimated directly from data side-band region

 \rightarrow No significant excess observed

 $\rightarrow \kappa_{\lambda}$ values allowed at 95% CL [-3.3, 8.5] (expected [-2.5, 8.2]) → κ_{2V} values allowed at 95% CL [-1.3, 3.5] (expected [-0.9, 3.1])

Strategy resolved 4b analysis

- \rightarrow Events are triggered with at least 4 jets criteria \rightarrow Jets should satisfy $p_T > 30(40)$ GeV and $|\eta| < 2.4/2.5$ for 2016 (2017, 2018)
- \rightarrow b-tagging performed using dedicated **DNN training**
- \rightarrow Additional leptons vetoed from the events
- \rightarrow Combine the each pair of jets from all combination into two H candidates.
- \rightarrow 96% accuracy for SM ggHH signal

PRL-129 (2022) 081802

 \rightarrow Overwhelming background due to the QCD induced multijet production and tt hadronic decay.

 \rightarrow Hard to rely on the simulation due to mismodelling of QCD.

 \rightarrow Data driven technique used, estimated from the control region (CR).

 \rightarrow Signal region (SR) and CR defined from 2D mass distribution of the two Higgs bosons.

Extraction of results Resolved HH→ 4b

→ **Boosted Decision Trees (BDT)** has been performed to discriminate signal from background.

 \rightarrow Signal extracted from the **BDT score in low and high m**_{HH} region separately for ggHH process, for VBFHH it is cut based analysis, m_{HH} is used to extract the results

 \rightarrow No excess observed over the background only expectation

Resolved HH \rightarrow 4b results

CMS

95% CL upper limits

Observed

Median expected

Theoretical prediction

68% expected

95% expected

4000

3000

-2

-1

σ_{ggF+VBF} (pp→HH) [fb] 3.9 (7.8) X σ^H 2000 1000 -10-5 0 5 10 κ

> $\rightarrow \kappa_{\lambda}$ values allowed at 95% CL [-2.3, 9.4] (expected [-5.0, 12.0])

 $\rightarrow \kappa_{2V}$ values allowed at 95% CL [-0.1, 2.2] (expected [-0.4, 2.5])

2

3

 κ_{2V}

0

CMS

Boosted HH \rightarrow 4b results arXiv:2205.06667

- \rightarrow Final state with two AK8 jets with p_T > 500 (400) GeV inside |η| < 2.5
- \rightarrow For VBF two extra jets with $p_T > 25$ GeV within $|\eta| < 4.7$
- → Higgs candidate are chosen using Graph Neural Network based ParticleNet Tagger
- \rightarrow Main contributing backgrounds from QCD and tt

- \rightarrow Analysis categorization based on the ParticleNet score
- \rightarrow Finally $\rm m_{\rm HH}$ used to extract the results

$HH \to WW\gamma\gamma$

 \rightarrow Analysis only targets ggHH production mode in Run-2 data

- → Three orthogonal categories depending on W bosons decay Different analysis strategy deployed.
- Semi-Leptonic (1 L): Multi-Class DNN to separate HH signal from single H and continuum background
- Fully-Leptonic (2 L):

Cut-based -Because of the clean final state and low stats,

Fully-Hadronic (0 L):

2 Binary DNN to separate signal from (i) contributing backgrounds and (ii) $bb\gamma\gamma$ signal

 \rightarrow 1D Fitting method performed on $m_{_{yy}}$ to extract the results

CMS-PAS-HIG-21-014

Results HH \rightarrow WW $\gamma\gamma$

New results from CMS CMS-PAS-HIG-21-014

Run-2 combination Nature 607 (2022) 60

 \rightarrow Sensitivity in HL-LHC sufficient to establish the existence of the SM HH production

CMS

Run-2 combination Nature 607 (2022) 60

Summary

- \rightarrow Non-resonant HH combination results in CMS with 138 fb-1 data
- \rightarrow Contributing channels : bbbb (resolved+boosted), bb $\tau\tau$, bb $\gamma\gamma$, bbZZ(4I), multilepton
- \rightarrow All results agree with SM prediction
- → Best sensitivity on HH production limits with the combination: Observed (expected) UL ~ 3.4 (2.5) × SM @ 95% CL From ATLAS 2.4 (2.9) x SM arXiv
- \rightarrow Constraints on κ_{λ} with 95% CL : [-1.24, 6.49] From ATLAS \rightarrow [-0.6, 6.6]

- → Constraints on κ_{2V} with 95% CL : [0.67, 1.38] with Exclusion of the κ_{2V} = 0 with 6.8 σ (6.5 σ) From ATLAS → [0.1, 2.0]
- → CMS also targets several other final states and also other production mode VHH, ttHH Analyses are ongoing final HH combination will be with all final states
- \rightarrow Extension of HH search will be continued to explore more in Run-3 data, Please stay tuned