

Search for low mass Higgs in CMS

Anirban Bala, Monoranjan Guchait, Soumya Mukherjee DHEP, TIFR DAE HEP Symposium 2022, IISER Mohali

Motivation behind our analysis

- ➤ Next-to-Minimal Supersymmetric Standard Model (NMSSM) ⇔ an extension of MSSM with an additional Higgs singlet
 - Two Higgs doublet (H_u, H_d) + A Higgs singlet (S)
- ➤ Total 7 Higgs

 CP even H₁, H₂, H₃; CP odd A₁, A₂, & charged Higgs H[±]
- Among the CP even Higgs, either H₁ or H₂ can be SM like. If H₂ is SM like, H₁ can be lighter than H₂
- The lightest CP odd A₁ can be also lighter than H₂ in a certain region of parameter space
- So, the mass of H₁ and A₁ (non-SM like) can be lighter than H₂ (SM like). These are basically the "light" Higgs. Both H₁ and A₁ are dominantly singlet like.
- As said earlier, non-SM like Higgs (A₁) can be singlet dominated.
- It has very suppressed coupling with SM particles (fermions & gauge bosons).
- > So, along with dominant bb decay mode, $A_1 \rightarrow \gamma\gamma$ branching ratio (BR) can be also very large (10-80 %) for a certain parameter space. [M.Guchait, Jacky Kumar 1608.05693]
- → Our analysis channel: $H \rightarrow AA \rightarrow bb\gamma\gamma$ (20 GeV < M_A < 60 GeV).

Analysis strategy

11

11

11

11

11

WH channel W \rightarrow ev, EGamma (UL 2018)

 $W \rightarrow \mu v$, Single Muon (UL 2018)

Dominant bkg ⇒

Event Selection 🗢

> At least 2 b-jets passing Deeplet Med WP

* Events are vetoed with additional leptons with loose-id to make analysis

X-sec (pb)

4.078

5343 88.29

365.34

Sample

TTGJets

DYJetsToLL

TTTo2L2Nu

≻ HLT-Ele32 trigger

> Only 1 e or μ

> At least 2 γ

 $> \Delta R(l,\gamma) > 0.4$

➤ HLT-IsoMu24 trigger

orthogonal with ZH

TTToSemiLeptonic

ZH channel

 $Z \rightarrow ee$, EGamma (UL 2018)

 $Z \rightarrow \mu\mu$, Double Muon (UL 2018)

Dominant bkg 🗢

Event Selection 🗢

➤ At least 2 b-jets passing DeepJet Med WP

X-sec (pb)

4.078

5343

88.29

365.34

Sample

TTGJets

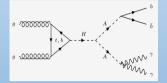
DYJetsToLL

TTTo2L2Nu

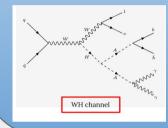
TTToSemiLeptonic

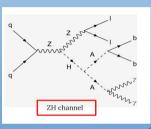
≻ HLT-Ele23_Ele12 trigger

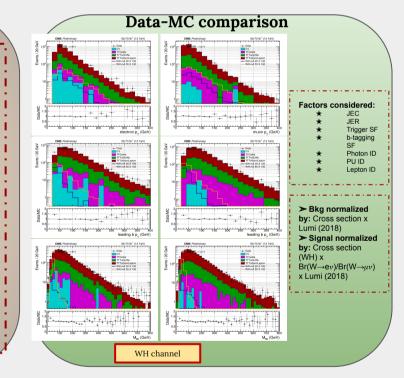
➤ HLT-Mu17_Mu8 trigger

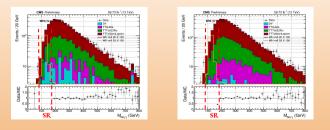

> At least 2 e or μ

> At least 2 γ


 $> \Delta R(l,\gamma) > 0.4$


Run-II analysis with VH (V=W/Z) channel


- Currently used diphoton trigger: HLT_Diphoton30_18_R9IdL_AND_HE_AND_IsoCaloId_ NoPixelVeto_Mass55
- Not very useful for our study
- New HLT paths proposed: HLT_Diphoton[18_12, 20_14]_eta1p5 with no invariant mass cut


For Run-II ⇔ VH (V=W/Z) channel using leptonic trigger

Choice of signal region (SR) & control region (CR)

Preferred choice of signal region (SR), 80 < m_{bbyy} < 170 GeV reduces significant amount of background without loosing signal contribution.
 Choice is based on significance and purity study.
 Drimer calculation of CP. (orthographic SP.) m < 80 CoV or m < 100 CoV or m

 \succ Primary selection of CR (orthogonal to SR): m_{bbyy} < 80 GeV or m_{bbyy} > 170 GeV.

Current status & future plans

- WH & ZH channel are being studied, overall good Data-MC agreement found.
- SR has been chosen based on 80 < m_{bbyy} < 170 GeV.
 Primary CR has been chosen which is orthogonal to SR.
- > Primary CR has been chosen which is **orthogonal to SR**.
- Now we are concentrating on the bkg estimation.
 We are also planning to perform the analysis in MVA method.
- We are merging 2016 & 2017 with 2018, full Run-II analysis is ongoing.