Collinear Functions for QCD Resummations

Prasanna Kumar Dhani IFIC, University of Valencia-CSIC

based on arXiv: 2208.05840 (accepted in JHEP) in collaboration with Stefano Catani

XXV DAE-BRNS High Energy Physics Symposium 2022

13 December 2022

Outline

Introduction

Transverse Momentum Resummation

Computational Framework

Collinear Factorisation – Time-Like (TL) Space-Like (SL) Collinear Functions – Differential Integrated

- Perturbative Results up to NNLO
- Summary & Outlook

The Large Hadron Collider

Thumb Rule for a Theoretical Physicist

QCD Factorisation: Short Range and Long Range

Differential Cross Section: General Structure

• The differential cross section in a generic variable ω can be theoretically separated into following two parts

Singular contributions are of Soft and Collinear origin. Hence, they have some degree of universality that leads to Resummation of these terms.

Why Resummation? Resummed Vs Fixed Order

• Low transverse momentum region: while the FO results are not reliable, the resummed results are smooth.

• High transverse momentum region: significant contributions are from the regular parts, making resummation ineffective.

[1] Catani, de Florian, Ferrera, Grazzini (1507.06937)

Resummed Prediction Vs Data

- Bulk of the events are produced in the low transverse momentum region.
- Theory is consistent with the data within the uncertainties.
- Overlap between two successive theory predictions showing perturbative convergence.
- From NLL+NLO to NNLL+NNLO: improvement in both uncertainties and data agreement.

Transverse Momentum Resummation

 Using the formalism of qT-resummation [1-2], singular part of the differential cross section in conjugate space has the following structure [2]

$$\begin{aligned} & \text{LO contribution} & \text{Sudakov form factor} \\ & [d\sigma_F] = \frac{M^2}{s} \sum_{c=q,\bar{q},g} \left[d\sigma_{c\bar{c},F}^{(0)} \right] \int \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{i\mathbf{b}\cdot\mathbf{q_T}} S_c(M,b) \\ & (p_1 + p_2)^2 \\ & \times \sum_{a_1,a_2} \int_{x_1}^1 \frac{dz_1}{z_1} \int_{x_2}^1 \frac{dz_2}{z_2} \left[H^F C_1 C_2 \right]_{c\bar{c};a_1a_2} f_{a_1/h_1} \left(x_1/z_1, b_0^2/b^2 \right) f_{a_2/h_2} \left(x_2/z_2, b_0^2/b^2 \right) \\ & \text{hard collinear factor} \end{aligned}$$

[1] Collins, Soper, Sterman (1985)

[2] Catani, Cieri, de Florian, Ferrera, Grazzini (1311.1654)

Hard Collinear Factor: Structure

• For the quark anti-quark annihilation channel, the hard collinear factor has the following form

$$\begin{bmatrix} H^{F}C_{1}C_{2} \end{bmatrix}_{c\bar{c};a_{1}a_{2}} = H_{c}^{F}\left(x_{1}p_{1}, x_{2}p_{2}; \Omega; \alpha_{s}(M^{2})\right) C_{ca_{1}}\left(z_{1}; \alpha_{s}\left(b_{0}^{2}/b^{2}\right)\right) C_{\bar{c}a_{2}}\left(z_{2}; \alpha_{s}\left(b_{0}^{2}/b^{2}\right)\right)$$
process dependent specify the system F collinear functions

• For the gluon gluon fusion channel, it has the form given by

$$\begin{bmatrix} H^F C_1 C_2 \end{bmatrix}_{gg;a_1 a_2} = H^F_{\mu_1 \nu_1, \mu_2 \nu_2} \left(x_1 p_1, x_2 p_2; \Omega; \alpha_s(M^2) \right) \\ \times C^{\mu_1 \nu_1}_{ga_1} \left(z_1; p_1, p_2, \mathbf{b}; \alpha_s(b_0^2/b^2) \right) C^{\mu_2 \nu_2}_{ga_2} \left(z_2; p_1, p_2, \mathbf{b}; \alpha_s(b_0^2/b^2) \right)$$

where [1]

$$Azimuthal a correlated part C_{ga}^{\mu\nu}(z; p_1, p_2, \mathbf{b}; \alpha_s) = d^{\mu\nu}(p_1, p_2)C_{ga}(z, \alpha_s) + D^{\mu\nu}(p_1, p_2; \mathbf{b})G_{ga}(z; \alpha_s)$$

$$d^{\mu\nu}(p_1, p_2) = -g^{\mu\nu} + \frac{p_1^{\mu}p_2^{\nu} + p_2^{\mu}p_1^{\nu}}{p_1 \cdot p_2} \qquad D^{\mu\nu}(p_1, p_2; \mathbf{b}) = d^{\mu\nu}(p_1, p_2) - 2\frac{b^{\mu}b^{\nu}}{\mathbf{b}^2} \qquad b^{\mu} = (0, \mathbf{b}, 0)$$

the indices μ and ν are the Lorentz indices of the gluon in hard scattering amplitude and its conjugate amplitude, respectively.

[1] Catani, Grazzini (1011.3918)

Goal: Collinear Functions

Collinear Factorisation of Matrix Element

• The collinear factorisation of hard scattering matrix element having N collinear partons in its most general form is given by [1]

auxiliary vector
$$\langle \rangle$$
 reduced ME
 $|\mathcal{M}(\{q_i\}; k_1, \dots, k_N)|^2 = \langle \mathcal{M}(\{q_i\}; \tilde{k}) | \mathcal{P}(\{q_i\}; k_1, \dots, k_N; n) | \mathcal{M}(\{q_i\}; \tilde{k}) \rangle + \dots$
non-coll. partons coll. limit of $\sum_{i=1}^{N} k_i$ splitting kernel

- In general the collinear splitting kernel depends on the momenta and quantum numbers (colour) of non-collinear partons in addition to its dependence on the collinear partons.
- The splitting kernel is PI and this property of factorisation is called strict collinear factorisation.
- [1] Catani, de Florian, Rodrigo (1112.4405)

- \blacktriangleright The SL collinear region is defined by $k_i^0 < 0$
- Strict collinear factorisation is instead violated in SL collinear region.

Differential Collinear Function: TL Region

• We define the differential collinear functions for the gluon in the TL region as follows [1]

$$\mathcal{F}_{ga}^{\mathrm{TL}\,\mu\nu}(p,k;n) = \sum_{N=2}^{+\infty} \left[\prod_{m=1}^{N-1} \int \frac{d^d k_m}{(2\pi)^{d-1}} \delta_+\left(k_m^2\right) \right] \left. \delta^{(d)} \left(k - \sum_{i=1}^{N-1} k_i\right) \times \sum_{a_1,\dots,a_{N-1}} \frac{\widetilde{\mathcal{P}}_{g \to a_1\dots a_N}^{\mu\nu}\left(k_1,\dots,k_N;n\right)}{\mathrm{SF}\left(a_1,\dots,a_{N-1}\right)} \right|_{\substack{k_N = p \\ a_N = a}} \right.$$

Bose symmetry factor

$$\mathcal{F}_{ga}^{\mathrm{TL}\,\mu\nu}(p,k;n) = d^{\mu\nu}(p;n) \mathcal{F}_{ga,\,\mathrm{az.in.}}^{\mathrm{TL}}(p,k;n) + D^{\mu\nu}(p,n;\mathbf{k_{T}},\epsilon) \mathcal{F}_{ga,\,\mathrm{corr.}}^{\mathrm{TL}}(p,k;n)$$
$$d^{\mu\nu}(p;n) = -g^{\mu\nu} + \frac{p^{\mu}n^{\nu} + n^{\mu}p^{\nu}}{np} - \frac{n^{2}p^{\mu}p^{\nu}}{(np)^{2}} \qquad D^{\mu\nu}(p,n;\mathbf{k_{T}},\epsilon) = d^{\mu\nu}(p;n) - (d-2)\frac{k_{T}^{\mu}k_{T}^{\nu}}{\mathbf{k_{T}}^{2}}$$

and for the quark

$$\mathcal{F}_{ca}^{\mathrm{TL}}(p,k;n) = \sum_{N=2}^{+\infty} \left[\prod_{m=1}^{N-1} \int \frac{d^d k_m}{(2\pi)^{d-1}} \delta_+\left(k_m^2\right) \right] \left. \delta^{(d)} \left(k - \sum_{i=1}^{N-1} k_i\right) \sum_{a_1,\dots,a_{N-1}} \frac{\mathcal{P}_{c \to a_1\dots a_N}\left(k_1,\dots,k_N;n\right)}{\mathrm{SF}\left(a_1,\dots,a_{N-1}\right)} \right|_{\substack{k_N = p \\ a_N = a}} , \qquad c = q, \bar{q}$$

Integrated Collinear Function: TL Region

• We define the transverse momentum dependent collinear functions for the gluon case as follows

$$\begin{aligned} F_{ga}^{\mathrm{TL}\,\mu\nu}(z;p/z,\mathbf{q_T};n) &= \delta(1-z) \,\,\delta^{(d-2)}(\mathbf{q_T}) \,\,\delta_{ga} \,\,d^{\mu\nu}(p;n) \\ &+ \int d^d k \,\,\delta^{(d-2)}(\mathbf{k_T}+\mathbf{q_T}) \,\,\delta\!\left(\frac{k^+}{p^+} - \frac{1-z}{z}\right) \,\,\mathcal{F}_{ga}^{\mathrm{TL}\,\mu\nu}(p,k;n) \end{aligned}$$
phase space in coll. limit

• For the quark case, it is given by

$$\begin{split} F_{ca}^{\rm TL} \bigg(z; \mathbf{q_T}^2, \frac{n^2 \mathbf{q_T}^2}{(2np/z)^2} \bigg) &= \delta(1-z) \ \delta^{(d-2)}(\mathbf{q_T}) \ \delta_{ca} \\ &+ \int d^d k \ \delta^{(d-2)}(\mathbf{k_T} + \mathbf{q_T}) \ \delta\bigg(\frac{k^+}{p^+} - \frac{1-z}{z}\bigg) \ \mathcal{F}_{ca}^{\rm TL}(p,k;n) \ , \ c = q, \bar{q} \end{split}$$

Renormalisation Procedure

QCD strong coupling renormalisation

$$\alpha_{\rm S}^{u}\mu_{0}^{2\epsilon}S_{\epsilon} = \alpha_{\rm S}\left(b_{0}^{2}/b^{2}\right)\left(\frac{b_{0}^{2}}{b^{2}}\right)^{\epsilon}\left[1 - \frac{\alpha_{\rm S}\left(b_{0}^{2}/b^{2}\right)}{\pi}\frac{\beta_{0}}{\epsilon} + \mathcal{O}\left(\alpha_{\rm S}^{2}\left(b_{0}^{2}/b^{2}\right)\right)\right]$$

Infrared factorisation in b-space

$$F_{ca}\left(z;\frac{n^{2}b_{0}^{2}}{(2zpn)^{2}b^{2}};\alpha_{\mathrm{S}};\epsilon\right) = \mathcal{Z}_{c}\left(\frac{n^{2}b_{0}^{2}}{(2zpn)^{2}b^{2}};\alpha_{\mathrm{S}};\epsilon\right) \sum_{b} \tilde{C}_{cb}\left(z;\frac{n^{2}b_{0}^{2}}{(2zpn)^{2}b^{2}};\alpha_{\mathrm{S}};\epsilon\right) \otimes \Gamma_{ba}\left(z;\alpha_{\mathrm{S}};\epsilon\right)$$

$$\stackrel{\bullet}{\longrightarrow} \tilde{C}_{cb}\left(z;\frac{n^{2}b_{0}^{2}}{(2zpn)^{2}b^{2}};\alpha_{\mathrm{S}};\epsilon=0\right) = C_{cb}\left(z;\alpha_{\mathrm{S}}\right) \stackrel{\bullet}{\longrightarrow} \Gamma_{ij}\left(z;\alpha_{\mathrm{S}}\right) = \delta_{ij}\delta(1-z) - \frac{\alpha_{\mathrm{S}}}{\pi}\frac{P_{ij}^{(0)}(z)}{\epsilon} + \mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right)$$

• Infrared factorisation factors for both gluon and quark are as follows

$$\begin{aligned} \mathcal{Z}_g &= 1 + \frac{\alpha_{\rm S}}{\pi} \left[\frac{C_A}{2} \left(\frac{1}{\epsilon^2} + \frac{1}{\epsilon} \ln\left(\frac{n^2 b_0^2}{(2znp)^2 b^2}\right) \right) + \frac{\beta_0}{\epsilon} - C_A \frac{\pi^2}{24} \right] + \mathcal{O}(\alpha_{\rm S}^2) \\ \mathcal{Z}_q &= 1 + \frac{\alpha_{\rm S}}{\pi} \left[\frac{C_F}{2} \left(\frac{1}{\epsilon^2} + \frac{1}{\epsilon} \ln\left(\frac{n^2 b_0^2}{(2znp)^2 b^2}\right) \right) + \frac{3}{4} \frac{C_F}{\epsilon} - C_F \frac{\pi^2}{24} \right] + \mathcal{O}(\alpha_{\rm S}^2) \end{aligned}$$

Results at NNLO: SL Case

Azimuthally correlated TMD collinear functions are obtained as follows

$$\begin{aligned} G_{gq}^{(2)} = & C_F^2 \left\{ -\frac{1-z}{2} + \frac{5}{4} \ln(z) - \frac{1}{4} \ln^2(z) - \frac{1-z}{2z} \left[\ln(1-z) + \ln^2(1-z) \right] \right\} \\ & + C_F n_f \left\{ -\frac{1-z}{3z} \left[\frac{2}{3} + \ln(1-z) \right] \right\} + C_A C_F \left\{ -\frac{11}{18z} + \frac{10}{9} - \frac{z}{2} - \ln(z) \left[\frac{1}{z} + \frac{5}{2} \right] \right. \\ & \left. + \frac{1}{2} \ln^2(z) + \frac{1-z}{z} \left[\frac{5}{6} \ln(1-z) + \frac{1}{2} \ln^2(1-z) + \text{Li}_2(z) - \frac{\pi^2}{6} \right] \right\}, \end{aligned}$$

$$\begin{aligned} G_{gg}^{(2)} = & C_F n_f \left\{ \frac{(1-z)^3}{2z} - \frac{1}{4} \ln^2(z) \right\} + C_A n_f \left\{ -\frac{17}{36z} + \frac{4}{9} + \frac{z}{12} + \frac{z^2}{36} - \frac{1}{6} \ln(z) \right\} \\ & + C_A^2 \left\{ -\frac{37}{36z} + \frac{31}{18} - \frac{13z}{12} + \frac{11z^2}{36} - \ln(z) \left[\frac{1}{z} + \frac{19}{12} \right] + \frac{1}{2} \ln^2(z) + \frac{1-z}{z} \left[\text{Li}_2(z) - \frac{\pi^2}{6} \right] \right\} \end{aligned}$$

Results at NNLO: TL Case

• Azimuthally correlated TMD collinear functions in the TL region are obtained as follows

$$\begin{split} G_{gq}^{TL(2)} = & C_F \left\{ -\frac{1}{8} + \frac{3z}{4} - \frac{5z^2}{8} - \ln(z) \left[\frac{1}{4} + \frac{3z}{8} - \frac{z^2}{4} \right] + z(1-z) \left[\frac{1}{4} \ln(1-z) \right. \\ & \left. + \frac{3}{8} \ln^2(z) - \frac{3}{2} \ln(z) \ln(1-z) + \frac{1}{4} \ln^2(1-z) - \text{Li}_2(z) - \frac{\pi^2}{12} \right] \right\} \\ & \left. + N_f \left\{ z(1-z) \left[\frac{1}{9} - \frac{1}{6} \ln(z) + \frac{1}{6} \ln(1-z) \right] \right\} + C_A \left\{ \ln(z) \left[\frac{1}{4} + \frac{13z}{6} - \frac{17z^2}{12} \right] \right. \\ & \left. + \ln^2(z) \left[\frac{3z}{4} + \frac{z^2}{2} \right] + z(1-z) \left[-\frac{25}{36} - \frac{5}{12} \ln(1-z) + \frac{1}{2} \ln(z) \ln(1-z) \right. \\ & \left. - \frac{1}{4} \ln^2(1-z) + \frac{1}{2} \text{Li}_2(z) + \frac{\pi^2}{6} \right] \right\}, \end{split}$$

$$\begin{aligned} G_{gg}^{TL(2)} = & C_F n_f \left\{ \frac{1}{18z} + \frac{1}{2} + z - \frac{14z^2}{9} + \ln(z) \left[-\frac{1}{3z} + 1 + \frac{3z}{2} \right] + \frac{3z}{4} \ln^2(z) \right\} \\ & + C_A n_f \left\{ -\frac{1}{36z} - \frac{1}{12} - \frac{4z}{9} + \frac{17z^2}{36} - \frac{z}{6} \ln(z) \right\} + C_A^2 \left\{ -\frac{1}{36z} - \frac{5}{12} - \frac{20z}{9} + \frac{11z^2}{4} \right. \\ & + \ln(z) \left[\frac{1}{3z} - 1 - \frac{67z}{12} + z^2 \right] + z(1-z) \left[\ln(z) \ln(1-z) - \text{Li}_2(1-z) \right] \\ & - \ln^2(z) \left[3z - \frac{z^2}{2} \right] \right\}. \end{aligned}$$

Summary & Outlook

• I presented our method to compute both SL and TL collinear functions for QCD resummations using respective splitting kernels for the scattering amplitude.

- To compute these functions, we defined a differential version at the intermediate level and integrate them using proper observable definition to obtain collinear functions for transverse momentum resummation.
- For the azimuthally independent collinear functions, we have presented results up to NLO and for the azimuthally correlated case, we have results up to NNLO in perturbation theory.

Summary & Outlook

- NNLO results for the azimuthally independent collinear functions are under completion.
- Soft functions at NNLO are also under completion.
- Our formalism can be extended and applied to other observables such as jet mass distributions, energy-energy correlation functions etc.

Summary & Outlook

- NNLO results for the azimuthally independent collinear functions are under completion.
- Soft functions at NNLO are also under completion.
- Our formalism can be extended and applied to other observables such as jet mass distributions, energy-energy correlation functions etc.

Thank you for your attention