Search for $B_s^0 \to \ell^{\mp} \tau^{\pm}$ Decay with semi-leptonic tagging method at Belle

L. Nayak¹ S. Nishida² A. Giri¹

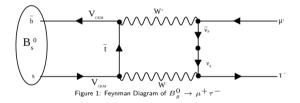
 $^1 {\sf IIT}, \ {\sf Hyderabad}$, $^2 {\sf KEK}$

(Belle Collaboration)

XXV DAE-BRNS HEP SYMPOSIUM 2022

December 14, 2022

1. Introduction

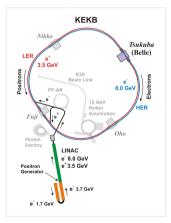

- 2. KEKB and Belle detector
- 3. Analysis Overview
- 4. Background Suppression
- 5. Estimation of $\mathcal{B}(UL)$

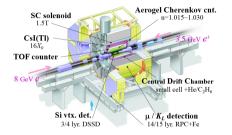
6. Summary

Introduction

The lepton flavor violating (LFV) $B_s^0 \rightarrow e^{\mp} \tau^{\pm}, \mu^{\mp} \tau^{\pm}$ decays;

- forbidden at the tree-level in the standard model (SM).
- such decays can occur via neutrino mixing through loop and box diagrams.
- predicted to occur in "beyond SM theories" with \mathcal{B} of order of 10^{-9} . [arXiv:1801.02895]
- So, observation of such decay would indicate new physics.




• An upper limit of B.F at 90% confidence level (CL) is obtained by LHCb Experiment :

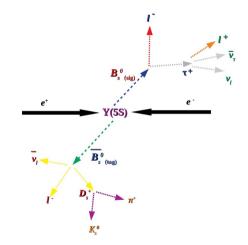
	$B_s^0 \to e \tau$	$B_s^0 \to \mu \tau$
LHCb		3.4×10^{-5}

KEKB and Belle detector

KEKB : 8 GeV electrons collide with 3.5 GeV positrons, at a center-of-mass energy 10.58 GeV.

- Belle detector is placed around the interaction point of 2 beams which consists of six sub-detectors
- The integrated luminosity : $e^+e^- \rightarrow \Upsilon(5S) \rightarrow B_s^{(*)}B_s^{(*)}$ (121 fb^{-1}) $\sim (16.6 \pm 2.7) \times 10^6 B_s$ mesons.
- Collected $\sim 1 \; \text{ab}^{-1}$ data at different resonances and off-resonances.

Search for $B_s^0 \to \ell^{\mp} \tau^{\pm}$ Decay at Belle (Preliminary, paper to be submitted)


Analysis Overview

Data Sample:

- 20M signal MC $(B_s\bar{B}_s,B_s^*\bar{B}_s^*,B_s^*\bar{B}_s)$ events generated at $\Upsilon(5S)$ resonance.
- For Background Study : Data Sample : $121 f b^{-1}$ Generic MC : bsbs, non-bsbs, uds, charm

Name	Process	
bsbs	B^0_s decays	
non-bsbs	$B_{u,d}$ meson decays	
charm	continuum $e^+e^- ightarrow car{c}$	
uds	continuum $e^+e^- ightarrow uar{u}, dar{d}, sar{s}$	

- Because of missing informations from τ daughter neutrinos in the decay mode a full reconstruction of B_s^0 (signal-side) is difficult.
- So the B^0_s semi-leptonic tagging method is used to tag $B^0_s \bar{B}^0_s$ events using $B_s \to D_s \ell(X) \nu$ decay mode.

• Particles in one event are separated to two sides: Signal side and Tag side.

Signal-side:

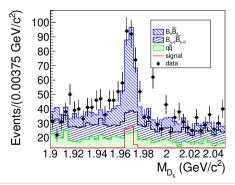
• B_s meson is reconstructed with one non- τ lepton (e, μ) and another τ -lepton.

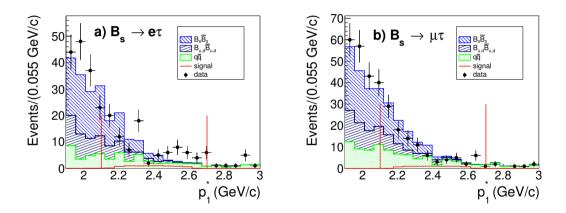
au decay	B.F (%)		
$\mu^+ \nu_\mu \bar{\nu_\tau}$	17.39 ± 0.04		
$e^+\nu_e\bar{\nu_{\tau}}$	17.82 ± 0.04		
total	35.21		

 $\ell1$: primary lepton, $\ell2$: lepton from au decay

 $\ell 3$: lepton from $B_s \to D_s \ell \nu$ decay

Tag-side:

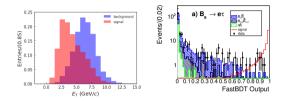

• D_s meson and a charged lepton are combined to form a B_s meson.

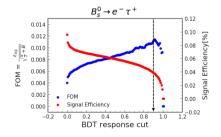

D_s decay	B.F (%)	
$D_s^+ \to \phi(\to K^+ K^-) \pi^+$	2.24 ± 0.08	
$D_s^+ \to \bar{K^{*0}} (\to K^+ \pi^-) K^+$	2.61 ± 0.09	
$D_s^+ o \phi \rho^0 \pi^+$	0.65 ± 0.13	
$D_s^+ \to K_S^0 K^+$	1.40 ± 0.05	
$D_s^+ \to \phi \rho^+$		
$\phi \to K^+ K^-, \rho^+ \to \pi^+ \pi^0$	$8.4^{+1.9}_{-2.3}$	
Total	15.30	

Event Selection:

Charged tracks are selected using tracking selection cuts and PID information.

	Selections		
p_1^*	$> 1.9 \; {\sf GeV/c}, \; p_1^* > p_2^*, p_3^*$		
M_{D_s}	$\in [1.96, 1.98] \; \mathrm{GeV/c^2}$		
$M_{\ell 1 \ell 2}$	$\notin [3.05, 3.12] \text{ GeV } (B_s \rightarrow \mu \tau(\mu \nu \nu))$		
	and $\notin [3.01, 3.12]$ GeV $(B_s \rightarrow e\tau(e\nu\nu))$		

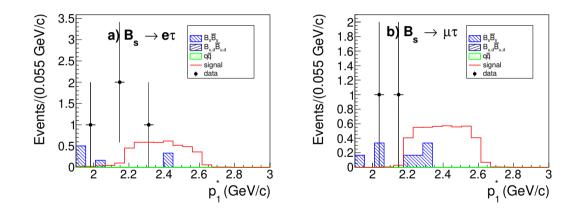

- signal MC is scaled to the data lumilosity with assumed $\mathcal{B} \sim 10^{-3}.$


Background Suppression

- Multivariate Analysis is performed to suppress the background.
- Equal amount of signal and background samples are used for training.

Method: FastBDT

- The classifier is trained with 27 discriminating featured variables to separate the signal from the background.
- These variables do not have any significant correlation with the signal extraction variable p₁^{*}.
- The classifier output $\mathcal{O}_{FastBDT}$ ranges from zero, where background events peak, to one, where the signal events peak
- 8-9% of events have multiple signal candidates.
- Candidtaes with the highest FastBDT output is retained.



Optimized cuts: 0.90($B_s \rightarrow e \tau$), 0.94($B_s \rightarrow \mu \tau$)

L.Nayak (IITH)

Search for $B^0_s \to \ell^{\mp} \tau^{\pm}$ Decay

December 14, 2022 9 | 13

• $\mathcal{B} = \frac{(N_{\text{obs}} - N_{\text{exp}}^{\text{bkg}})}{(2 \times N_{B_s} \times \epsilon_{\text{sig}})}$, where $N_{\text{obs}} =$ the number of the observed events $N_{\text{exp}}^{\text{bkg}} =$ the number of the expected data events in the signal region $N_{B_s} =$ number of B_s mesons in the data $\epsilon_{\text{sig}} =$ signal efficiency

- $\Upsilon(5S) \rightarrow B_s^{(*)} B_s^{(*)}$ decay branching fraction $f_s = 0.201 \pm 0.031$
- Since the uncertainty in f_s is significant, we also give the upper limit on $f_s \times \mathcal{B}(B_s \to \ell^- \tau^+)$.

Systematic Uncertainties (%):

Source	$B_s \to e^- \tau^+$	$B_s \to \mu^- \tau^+$
$\overline B{}^0_s o D^+_s \ell^- \overline u_\ell$ tag	15.0	15.0
FastBDT correction	3.3	3.7
PID	4.3	3.5
Tracking	0.7	0.7
$ au ightarrow \ell u_{ au} \overline{ u}_{\ell} BF$	0.2	0.2
Number of B_s	16.1	16.1
Total	22.7	22.6

Results:

	$\epsilon_{\sf sig}$ (%)	$N_{\rm bkg}^{\rm exp}$	$N_{\rm obs}$	\mathcal{B}	$f_s \times \mathcal{B}$
		0		$(\times 10^{-4})$	$(\times 10^{-4})$
$B_s \to e^- \tau^+$	0.0312 ± 0.0071	0.68 ± 0.69	3	< 14.1	< 5.5
$B_s \to \mu^- \tau^+$	0.0303 ± 0.0068	0.77 ± 0.78	1	< 7.3	< 2.9

First limit on the $B_s \rightarrow e\tau$ decay. (preliminary result)

L.Nayak (IITH)

- Searched for $B_s \to \ell \tau$ using $\Upsilon(5S)$ Belle data with semi-leptonic tagging method.
- No signal observed and obtained upper limits are $\mathcal{B}(B_s \to e\tau) < 1.4 \times 10^{-3}$ and $\mathcal{B}(B_s \to \mu\tau) < 7.3 \times 10^{-4}$ at 90% CL.
- First measurement on $B_s \rightarrow e \tau$ decay.

Thank You