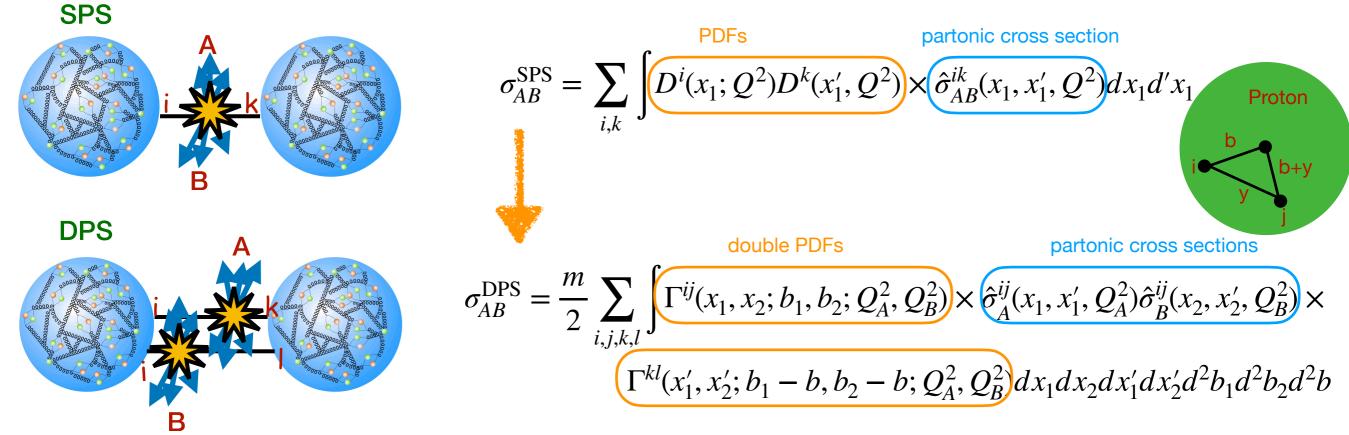

Review of DPS measurements at the LHC

XXV DAE-BRNS High Energy Physics Symposium 2022 IISER Mohali


Double parton scattering (DPS)

- Two distinct hard scatters in a single pp collision double parton scattering
- Cross section for a "nPS" process is suppressed as compared to SPS

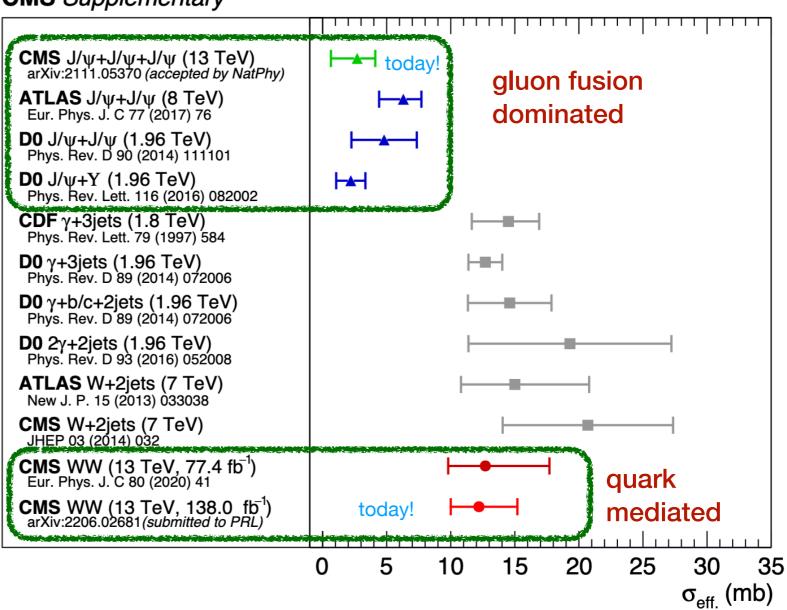
- Probes the internal structure of a proton
- Background for rare SM and new physics processes
- Provides input for the tuning of MC simulations

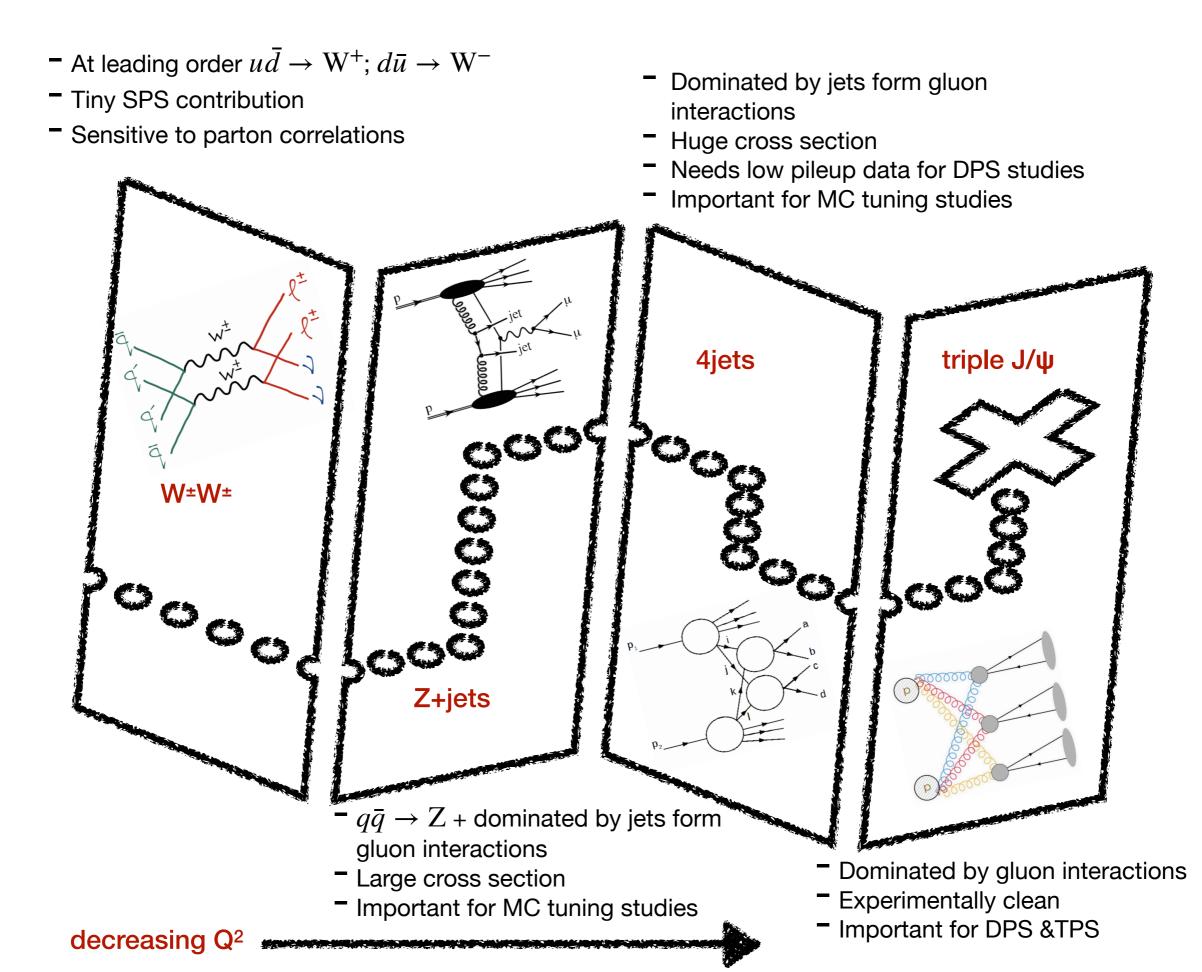
Cross section formula for DPS

assuming longitudinal and transverse factorization of dPDFs

simplified expression for $\sigma_{\text{DPS}} \longrightarrow \text{pocket formula}$

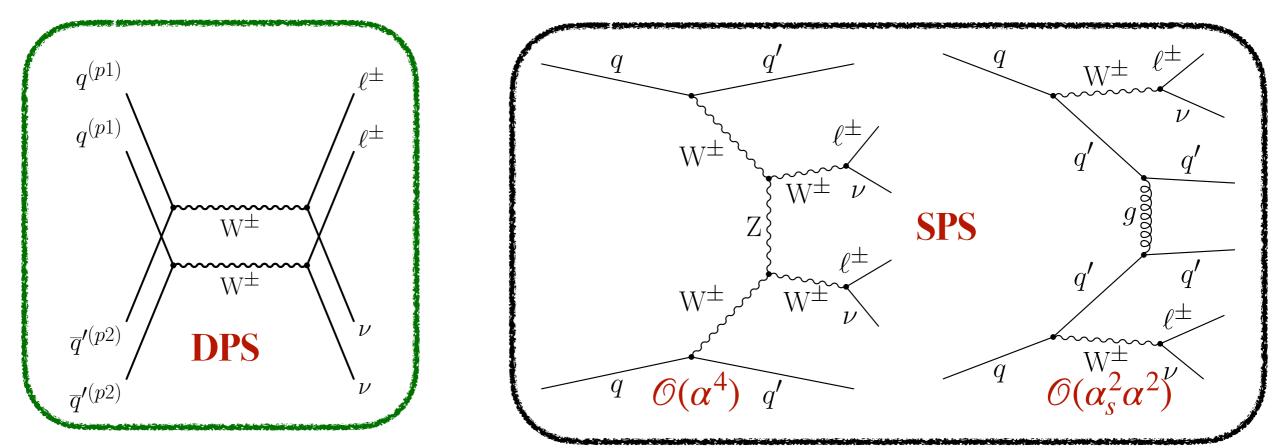
$$\sigma_{AB}^{\text{DPS}} = \frac{m}{2} \frac{\sigma_A \sigma_B}{\sigma_{\text{eff}}} \quad \sigma_{\text{eff}} = \left[\int d^2 b t(b) \right]^{-1}$$


 σ_A , σ_B : SPS cross sections for two interactions m : 1 if A = B else 2


 σ_{eff} : effective cross section for DPS

Effective cross section parameter

- Proxy to mean inter-parton transverse separation squared …, sort of an impact parameter; smaller σ_{eff} implies a larger σ^{DPS} & vice-versa
- Expected to be process, scale & c.o.m. energy independent "in the assumed simplest model" CMS Supplementary

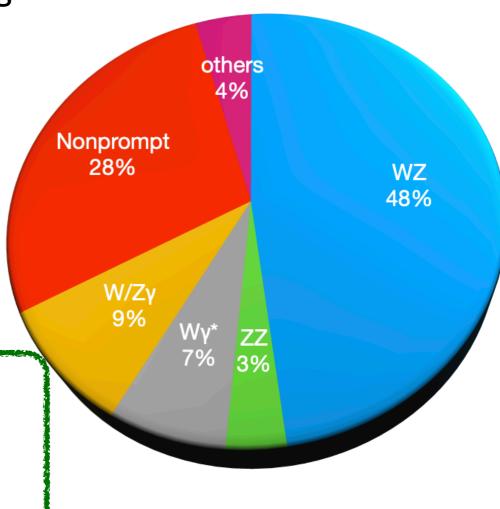

- Pythia8: 20-30 mb
 (large tune dependence)
- Measurements: 5-20 mb
- Inter-parton correlations?
- Parton-flavor dependence (quark/gluon)?
- Flaws in DPS factorization?

DPS with W±W±

- Golden channel for DPS production since SPS W[±]W[±] production suppressed at matrix element level due to presence of (two) extra jets
- Pythia8 predicts cross section for W±W± …+ 2l2v ~ 86 fb @13 TeV

- Sensitive to inter-parton correlations
- Experimentally clean final state with leptonic W decays
 - Negligible contributions from leptons from adjacent bunch crossings

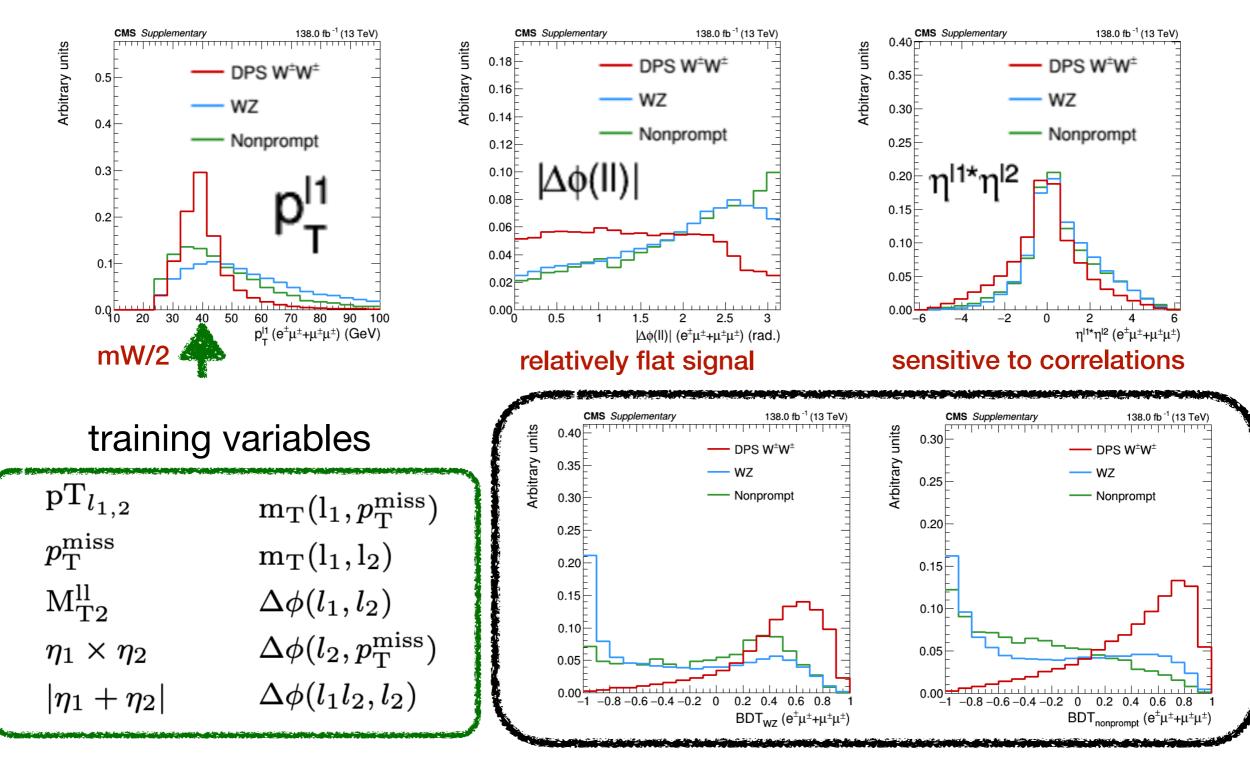
Analysis strategy


- Signal: W[±]W[±] ··· + eµ or µµ final states with moderate p_T^{miss} ··· + modelled using Pythia8 & dShower with model uncertainties from Herwig
- Background contributions from prompt & nonprompt lepton productions
 - Prompt contributions …> from MC simulations at NLO order in pQCD
 - Nonprompt contributions --> estimated using data __
- BDT-based signal & background discrimination
- Signal cross section extracted using binned maximum likelihood fit to the shape of the BDT classifier

two leptons $e^{\pm}\mu^{\pm}$ or $\mu^{\pm}\mu^{\pm}$ $p_{T}^{\ell_{1}} > 25 \text{ GeV}, p_{T}^{\ell_{2}} > 20 \text{ GeV}$ $|\eta_{e}| < 2.5, |\eta_{\mu}| < 2.4$ $p_{T}^{\text{miss}} > 15 \text{ GeV}$ $m_{\ell\ell} > 12 \text{ GeV}$ $N_{\text{jets}} < 2$ $N_{\text{b-jets}} == 0$ veto on additional leptons veto on hadronic τ leptons $p_{T}^{\ell\ell} > 20 \text{ GeV}$ for $e^{\pm}\mu^{\pm}$ channel

event selection

Background processes


- Dominant contribution from WZ--+3lv; one lepton from Z is lost
 - Kinematically very similar to the signal process
- Nonprompt lepton contributions (W+jets, QCD multijets, and semi-leptonic decays of $t\bar{t}$)
- Prompt lepton contributions also from:
 - Wγ*, ZZ, SPS W±W±, VVV, $t\bar{t}$ V
 - Photon conversions $(W/Z\gamma)$ Only in eµ channel
 - Lepton charge misidentification ($t\overline{t}$, DY, WW) (data-driven estimation)

Two separate BDT classifiers for WZ & nonprompt

BDT classifiers

 Training variables …, kinematic differences between (uncorrelated) signal & (correlated) backgrounds

Statistical analysis

high purity bins

Results

Inclusive W±W± ...+ 2l2v cross section

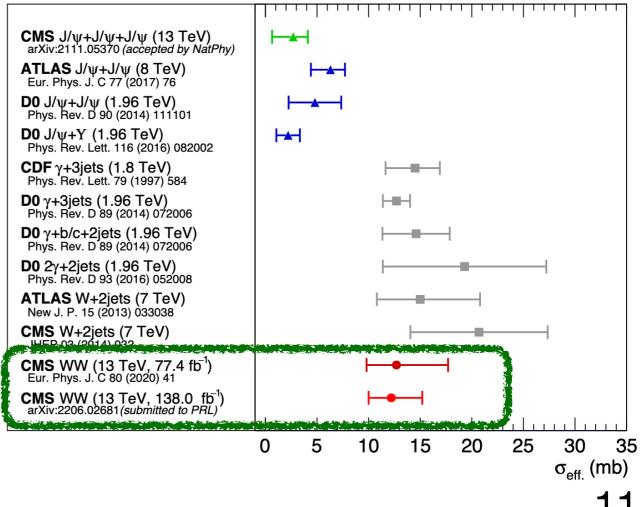
 80.7 ± 11.2 (stat) $^{+9.5}_{-8.6}$ (syst) \pm 12.1 (model) fb

Fiducial cross section

 6.28 ± 0.81 (stat) ± 0.69 (syst) ± 0.37 (model) fb

Using pocket formula

 $\sigma_{\rm eff} = 12.2^{+2.9}_{-2.2}\,{
m mb}$

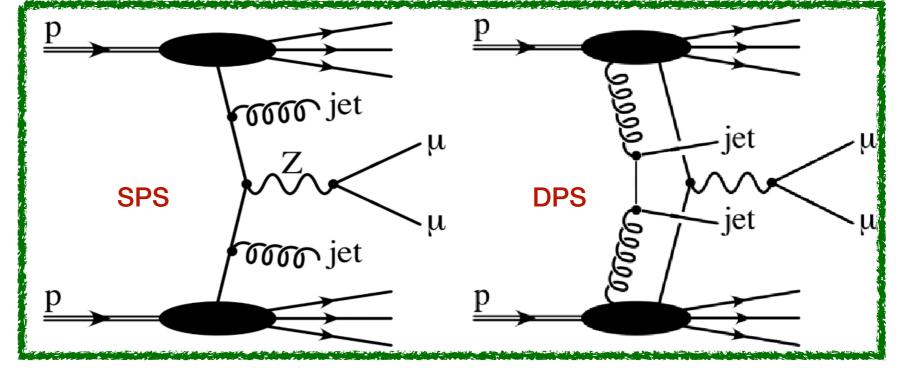

- Consistent with previous
 measurement from the same channel and with the ones involving W bosons
- Improved precision

First observation of W[±]W[±] via DPS with 6.2 s.d. (obs.)

from Herwig: difference in

- reconstruction
- Efficiencies for leptons & generator acceptance

CMS Supplementary



DPS with Z+jets

- Z+jets production excellent testing ground for theoretical predictions
 - Next-to-leading order matrix element generators interfaced to parton shower models ----> plenty of room for theoretical development, tuning etc
- Constitutes a non-negligible background for many SM measurements and new physics searches

Z+jets events to explore observables sensitive to the presence of DPS

Differential cross
 sections in Z+≥1 jet &
 Z+≥2 jets categories as
 function of DPS sensitive observables

Analysis strategy

- 35.9 fb⁻¹ of pp collisions data at 13 TeV
- Clean experimental signature with Z[…]+µµ
- Events triggered using single muon triggers with pT > 24 GeV
 - Offline selection:
 - dimuon pair with pT > 27 GeV & $|\eta| < 2.4$ within a Z mass window \checkmark
 - at least one jet with pT > 20 GeV and $|\eta| < 2.4$
- Signal modelled using LO & NLO simulation models
- Minor background contribution from $t\overline{t}$

DPS sensitive observables $\begin{array}{l} \textbf{Z+\geq 1 jet} \\ \Delta \varphi(\textbf{Z},\textbf{j1}) \quad \Delta_{rel} p_{T}(\textbf{Z}, \textbf{j}_{1}) = \frac{|\vec{p_{T}}(\textbf{Z}) + \vec{p_{T}}(\textbf{j}_{1})|}{|\vec{p_{T}}(\textbf{Z})| + |\vec{p_{T}}(\textbf{j}_{1})|} \end{array}$

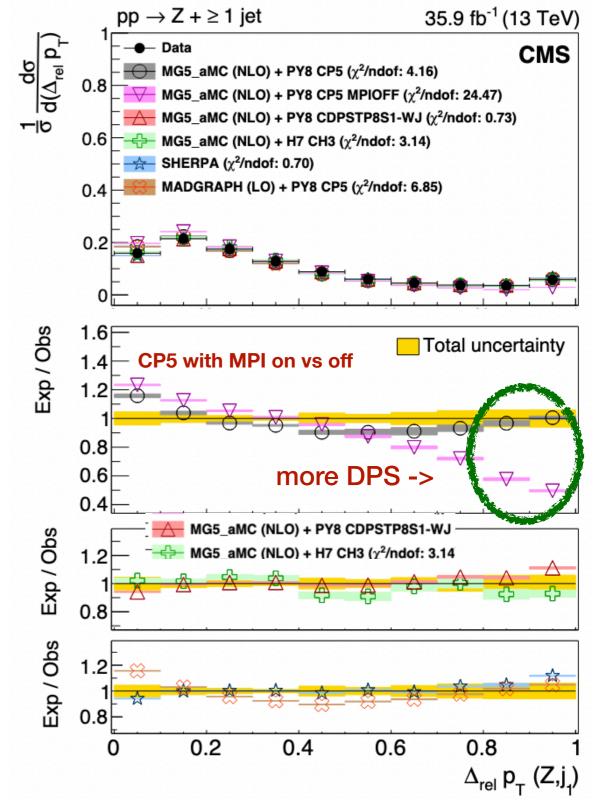
$$\Delta \varphi(Z, dijet) \ Z + \ge 2jets$$

$$\Delta_{rel} p_{T}(j_1, j_2) = \frac{|\vec{p}_{T}(j_1) + \vec{p}_{T}(j_2)|}{|\vec{p}_{T}(j_1)| + |\vec{p}_{T}(j_2)|}$$

$$\Delta_{rel} p_{T}(Z, dijet) = \frac{|\vec{p}_{T}(Z) + \vec{p}_{T}(dijet)|}{|\vec{p}_{T}(Z)| + |\vec{p}_{T}(dijet)|}$$

Fiducial cross section

Fiducial cross section measurement compared with different predictions


Cross section (pb)		$Z+\geq 1$ Jets	$Z+\geq 2$ Jets
Measured in data		158.5 ± 0.3 (stat)	$44.8\pm0.4(\mathrm{stat})$
		\pm 7.0 (syst)	± 3.7 (syst)
		± 1.2 (theo)	± 0.5 (theo)
	NA STRATES MICH. IN M. LANSING STRATES MICH. IN M. L. M. M. L. M. M. C. M. M. C. M.	± 4.0 (lumi) pb	±1.1 (lumi) pb
Predicted by MC	an 2, see anna 20 a Rùsach a sao 2, see ann an airte an Aonrachan Aonracha Aonrach 2, see anna 20 a Rùsach a' Rùsacha	and seein ness strands to held a fan and seen	
MG5_aMC (NLO)	PYTHIA8, CP5 tune	167.4 ± 9.7	47.0 ± 3.9
	PYTHIA8, CP5 tune MPIOFF	143.8 ± 0.3	37.7 ± 0.2
	PYTHIA8, CDPSTP8S1-WJ tune	178.4 ± 0.3	50.5 ± 0.2
	HERWIG7, CH3 tune	158.3 ± 1.1	44.4 ± 0.6
$MG5_aMC (LO) + 1$	PYTHIA8, CP5 tune	161.2 ± 0.1	45.3 ± 0.1
SHERPA (NLO+LO)		149.8 ± 0.2	41.6 ± 0.1

- CP5 tune with MPI off underestimates the measurement by ~10 (16)% for $Z+ \ge 1(2)$ jet events
- DPS-specific tune over predicts the cross section by 10%
- Well described by Sherpa, MG+Py8 (CP5) & MG+Hw7

Differential cross section

Normalized differential cross section

- MG+Py8 with MPI-off underestimates the measurement by ~ 50% in the MPIdominated region
- MG+Py8 (CP5) overestimates (up to 20%) in the SPS-dominated region
- MG+Py8 with DPS-specific tune describes the measurement well
- MG+Hw7 and Sherpa describe the distribution well within uncertainties



DPS with 4jets

- Jet production is one of the most abundant processes at LHC
- Low transverse momentum and forward/backward jets allow for the low-x region to be probed …, important information for MC tuning

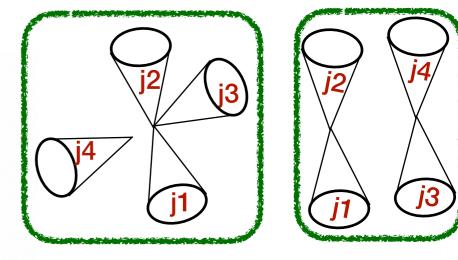
Four jets production via SPS vs two independent dijets via DPS

 Multiple simulation setups compared with data using DPS-sensitive variables

- DPS cross section is extracted using template fit method
- $\sigma_{\rm eff}$ extraction using pocket formula

Analysis strategy

- 42 nb⁻¹ of low-pileup (<µ> = 1.3) pp collisions data at 13 TeV selected using single-jet triggers
- Offline selection:
 - Exactly one primary vertex


Azimuthal angle between the hardest and

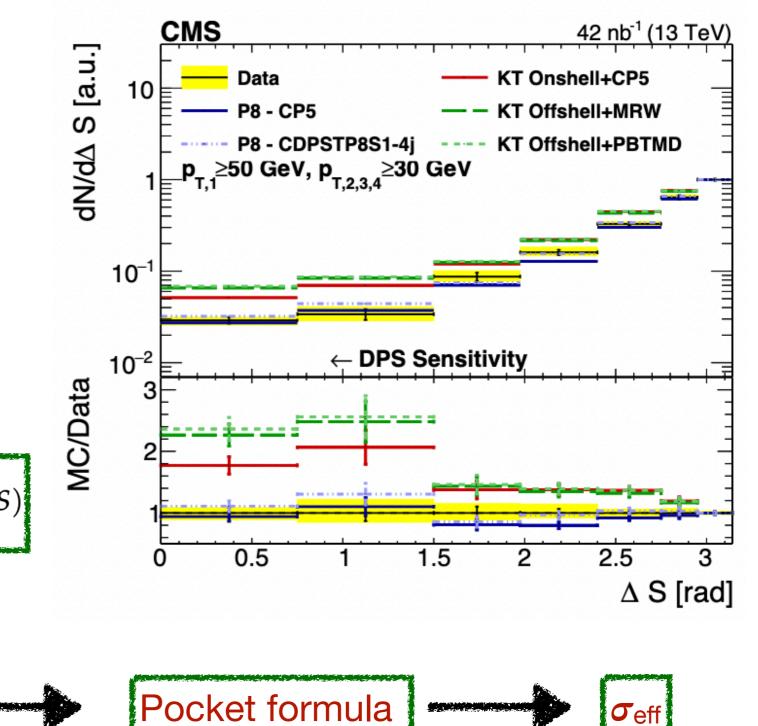
the softest jet pair

- 4 jets with asymmetric pT cuts going down to 20 GeV
- SPS template from MC, DPS from random mixing of single jet data events

angular observables tested for DPS-sensitivity

Azimuthal angle of the soft jet pair: $\Delta \phi_{soft} = |\phi_3 - \phi_4|$ Combined minimum angle of 3 jets: $\Delta \phi_{3j}^{min} = min_{ijk} \{ |\phi_i - \phi_j| + |\phi_j - \phi_k| \}$ Transversal momentum balance of the soft jet pair: $\Delta p_{T,soft} = \frac{|\vec{p}_{T,3}| + |\vec{p}_{T,4}|}{|\vec{p}_{T,3} + \vec{p}_{T,4}|}$ Maximum difference in pseudorapidity: $\Delta Y = max_{ij} \{ |\eta_i - \eta_j| \}$

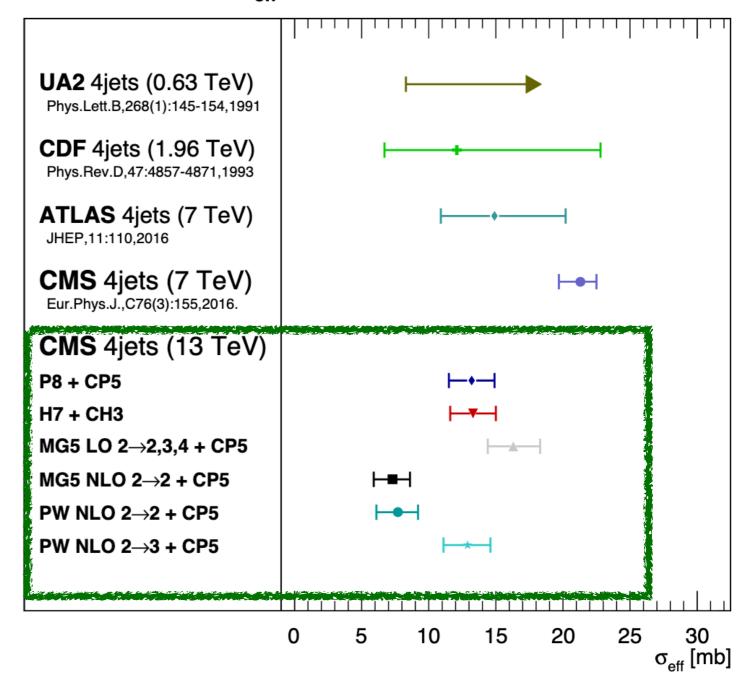
Azimuthal angle of the most remote jets: $\phi_{ij} = |\phi_i - \phi_j|$ for $\Delta Y = max_{ij} \{|\eta_i - \eta_j|\}$


he hardest and $\Delta S = \arccos\left(\frac{\left(\vec{p}_{T,1} + \vec{p}_{T,2}\right) \cdot \left(\vec{p}_{T,3} + \vec{p}_{T,4}\right)}{\left|\vec{p}_{T,1} + \vec{p}_{T,2}\right| \cdot \left|\vec{p}_{T,3} + \vec{p}_{T,4}\right|}\right)$ most sensitive to DPS

Results

- Distribution normalized to the last bin (having lowest DPS contribution)
- Py8 with CDPSTP8S1-4j tune describes the data well

$$\sigma^{\text{data}}(\Delta S) = f_{\text{DPS}} \sigma^{\text{data}}_{\text{DPS}}(\Delta S) + (1 - f_{\text{DPS}}) \sigma^{\text{MC}}_{\text{SPS}}(\Delta S)$$

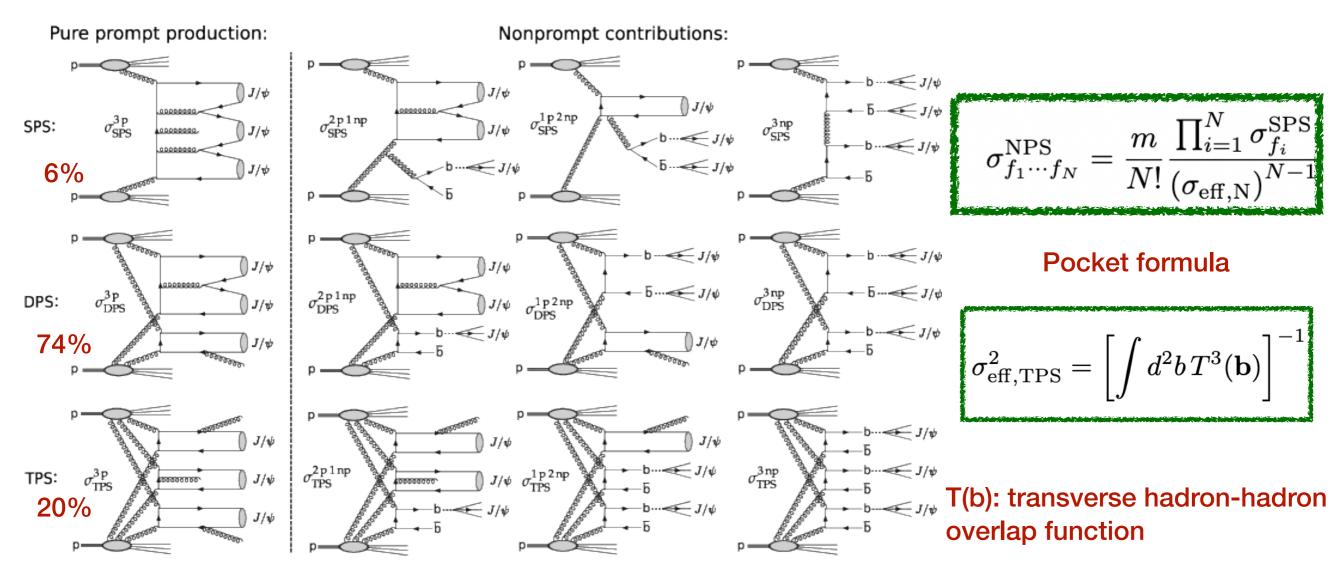

 $\sigma_{A,B}^{DPS} = f_{DPS} \int \sigma^{data}(\Delta S) d(\Delta S).$

Effective cross section

Excellent sensitivity to different models used to model SPS

- Extracted σ_{eff} agrees with UA2, CDF, and ATLAS experiments
- Models using a 2→2 ME with older UE tunes …→ need the smallest DPS contribution
- NLO models yield lowest values of σ_{eff} ··· + need even more DPS

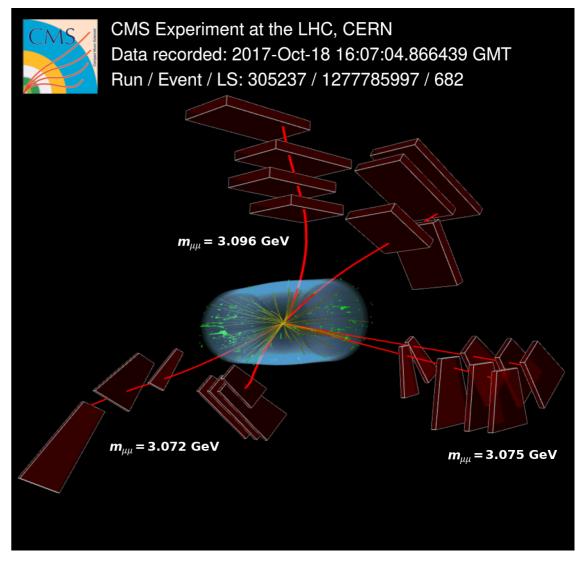
σ_{eff} measurements


0000

Reeeeee

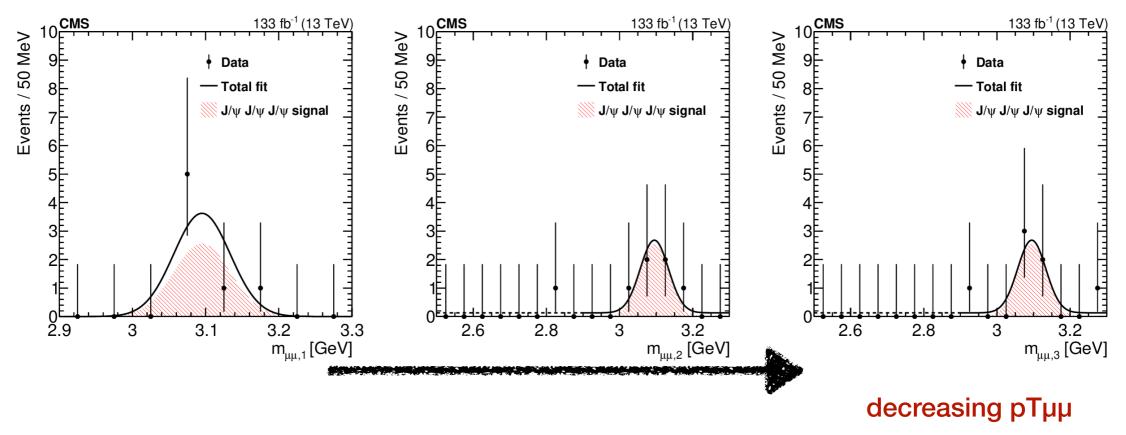
60000

Triple J/ψ production


- First study of inclusive triple J/ψ production & TPS
- 2'2000000000 Measured cross section ... + contributions from DPS (dominated contribution) + TPS + SPS (minor contribution)
- Novel approach to extract DPS effective cross section

Event selection

- pp collisions at 13 TeV with integrated luminosity 133 fb⁻¹
- Experimentally clean and pure final states with (six) muons


- Triple muon trigger (84% efficient):
 - $p_T > 3.5$ GeV (barrel), $p_T > 2.5$ GeV (endcaps)
 - at least one µ∓µ± with 2.8 < m_{µµ} < 3.35 GeV from same vertex
- Offline selection (efficiency = 78%):
 - $\mu^{\mp}\mu^{\pm}$ pairs from same primary vertex with 2.9 < $m_{\mu\mu}$ < 3.3 GeV
 - J/ ψ candidates: p_T > 6.5 GeV & |y| < 2.4

- Background: semi-leptonic decays of heavy flavour & DY
- 6 events in data after selection

Signal extraction

- 3D un-binned extended maximum likelihood fit to m_{µµ} within 2.9-3.3 GeV
- Signal modelled using Gaussian with resolution fixed to MC & mean to PDG J/ψ mass
- Exponential background

- N(signal) = $5.0^{+2.6}_{-1.9}$, N(background) = $1.0^{+1.4}_{-0.8}$
- Extended mass region, down to 2.3 GeV to confirm background estimation

Results

 $\sigma(\mathrm{pp}
ightarrow \mathrm{J}/\psi\mathrm{J}/\psi\mathrm{X}) = 272^{+141}_{-104}\,\mathrm{(stat)}\pm17\,\mathrm{(syst)}\,\mathrm{fb}$

Signal significance: 6.7 s.d. (obs.) 5.5 s.d. (exp.)

First observation of triple J/ψ

Measured cross section = predicted cross section for SPS+DPS+TPS

$$\begin{aligned} \sigma_{\text{tot}}^{3J/\psi} &= \sigma_{\text{SPS}}^{3J/\psi} + \sigma_{\text{DPS}}^{3J/\psi} + \sigma_{\text{TPS}}^{3J/\psi} = \\ &= \left(\sigma_{\text{SPS}}^{3\,p} + \sigma_{\text{SPS}}^{2p1np} + \sigma_{\text{SPS}}^{1p2np} + \sigma_{\text{SPS}}^{3\,np}\right) + \\ &+ \left(\sigma_{\text{DPS}}^{3\,p} + \sigma_{\text{DPS}}^{2p1np} + \sigma_{\text{DPS}}^{1p2np} + \sigma_{\text{DPS}}^{3\,np}\right) + \left(\sigma_{\text{TPS}}^{3\,p} + \sigma_{\text{TPS}}^{2p1np} + \sigma_{\text{TPS}}^{3\,np}\right) \end{aligned}$$

factorize DPS & TPS cross sections

$$\begin{split} \sigma_{\rm DPS}^{3J/\psi} = & \frac{m_1 \left(\sigma_{\rm SPS}^{2p} \sigma_{\rm SPS}^{1p} + \sigma_{\rm SPS}^{2p} \sigma_{\rm SPS}^{1np} + \sigma_{\rm SPS}^{1p} \sigma_{\rm SPS}^{1p1np} + \sigma_{\rm SPS}^{1p1np} \sigma_{\rm SPS}^{1np} + \sigma_{\rm SPS}^{1p} \sigma_{\rm SPS}^{2np} + \sigma_{\rm SPS}^{2np} \sigma_{\rm SPS}^{1np} \right)}{\sigma_{\rm eff, DPS}} \\ \sigma_{\rm SPS}^{3J/\psi} = & \frac{m_3 \left(\left(\sigma_{\rm SPS}^{1p}\right)^3 + \left(\sigma_{\rm SPS}^{1np}\right)^3\right) + m_2 \left(\left(\sigma_{\rm SPS}^{1p}\right)^2 \sigma_{\rm SPS}^{1np} + \sigma_{\rm SPS}^{1p} \left(\sigma_{\rm SPS}^{1np}\right)^2\right)}{\sigma_{\rm eff, TPS}^2}, \end{split}$$

- Predictions for SPS cross sections from HELAC-ONIA & MG
- In absence of parton correlations: $\sigma_{\text{eff,TPS}} = (0.82 \pm 0.11) \times \sigma_{\text{eff,DPS}}$

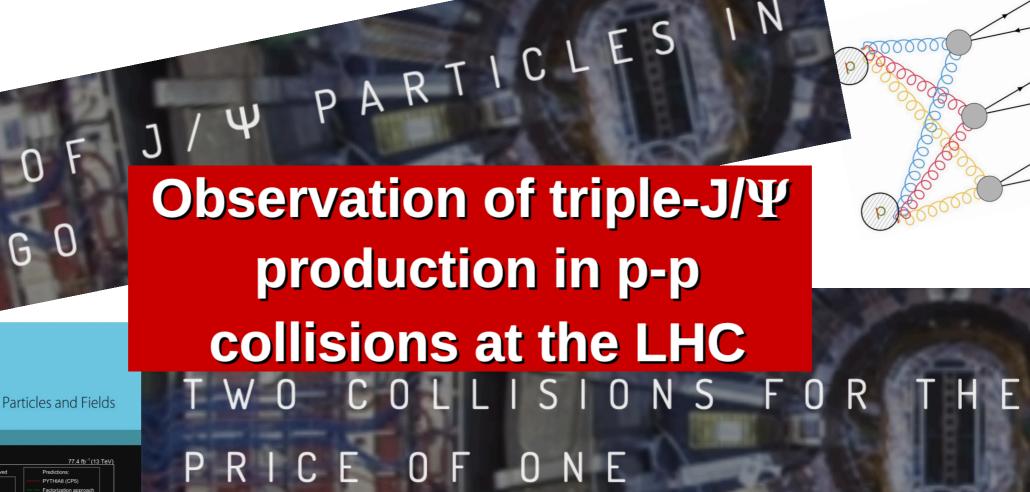
Phys. Rev. Lett. 118, 122001 (2017)

$$\sigma_{
m eff,DPS} = 2.7^{+1.4}_{-1.0}\,(
m exp)^{+1.5}_{-1.0}$$
 (theo) mb

Summary

- σ_{eff} consistent with existing quarkonia measurements from DPS events
- σ_{eff} obtained from
 quarkonia measurements
 (x~ 0.005) favor a smaller
 value compared to the final
 states with W/Z (x~0.01)

•••	CMS , √ s=13 TeV, J/ψ+J/ψ+J/ψ			
	CMS , √ s=8 TeV, J/ψ+J/ψ	Phys. Rept. 889 (2020) 1		
100	ATLAS , γ s=8 TeV, J/ψ+J/ψ	Eur. Phys. J. C 77 (2017) 76		
	D0 , √ s=1.96 TeV, J/ψ+J/ψ	Phys. Rev. D 90 (2014) 111101		
	D0 , √s=1.96 TeV, J/ψ+Υ	Phys. Rev. Lett. 117 (2016) 062001		
	ATLAS , √s=8 TeV, Z+b→J/ψ	Nucl. Phys. B 916 (2017) 1312		
	ATLAS , √s=8 TeV, Z+J/ψ	Phys. Rept. 889 (2020) 1		
	ATLAS , √s=8 TeV, W+J/ψ	Phys. Lett. B 781 (2018) 485		
-8-	D0 , √s=1.8 TeV, γ+3-jet	Phys. Rev. D 81 (2010) 052012		
148 4	CDF , √ s=1.8 TeV, γ+3-jet	Phys. Rev. D 56 (1997) 3811		
	UA2 , √s=640 GeV, 4-jet	Phys. Lett. B 268 (1991) 145		
	CDF , √s=1.8 TeV, 4-jet	Phys. Rev. D4 7 (1993) 4857		
	ATLAS, √s=7 TeV, 4-jet	JHEP 11 (2016) 110		
-	CMS , √s=7 TeV, 4-jet	Eur. Phys. J. C 76 (2016) 155		
	CMS , √ s=13 TeV, 4-jet	arXiv:2109.13822		
	CMS, √s=7 TeV, W+2-jet	JHEP 03 (2014) 032		
	ATLAS, √s=7 TeV, W+2-jet	New J. Phys. 15 (2013) 033038		
	CMS , √ s=13 TeV, WW	Eur. Phys. J. C 80 (2020) 41		
0 20 40				
5 25 10				


 $\sigma_{\text{eff,DPS}}$ [mb]

- For a given scale of process, different measurements from different experiments agree within uncertainties
- Differences in measured σ^{eff} for gluon & quarks induced processes \rightarrow can we improve factorisation approach?
 - Inclusion of parton correlations in MC event generators
 - dShower is just the first step!
 - Many theoretical advancements but need experimental verification

quick reads :)

🖄 Springer

30/03/20

observation of WW from double parton scattering at CMS

<u>https://cms.cern/news/trio-jps-particles</u>-one-go#

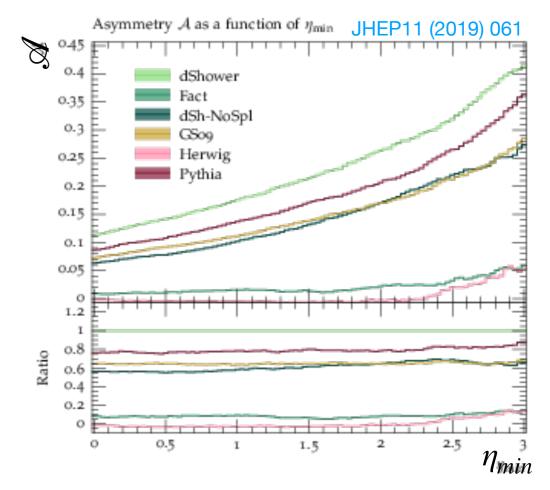
https://cms.cern/news/two-collisions-price-one

DPS pocket formula

Strategy: assume that the two hard interactions are independent

$$\sigma_{AB}^{\text{DPS}} = \frac{m}{2} \sum_{i,j,k,l} (\overline{\psi}^{ij}(x_1, x_2; b; Q_A^2, Q_B^2) \times (\widehat{\sigma}_A^{ik}(x_1, x_1', Q_A^2) \widehat{\sigma}_B^{ij}(x_2, x_2', Q_B^2) \times (\Gamma^{kl}(x_1', x_2'; b; Q_A^2, Q_B^2) \times (\Gamma^{kl}(x_1, x_2; Q_A^2, Q_A^2) \times (\Gamma^{kl}(x_1, x_2; Q_A^2, Q_A^2) \times (\Gamma^{kl}(x_1,$$

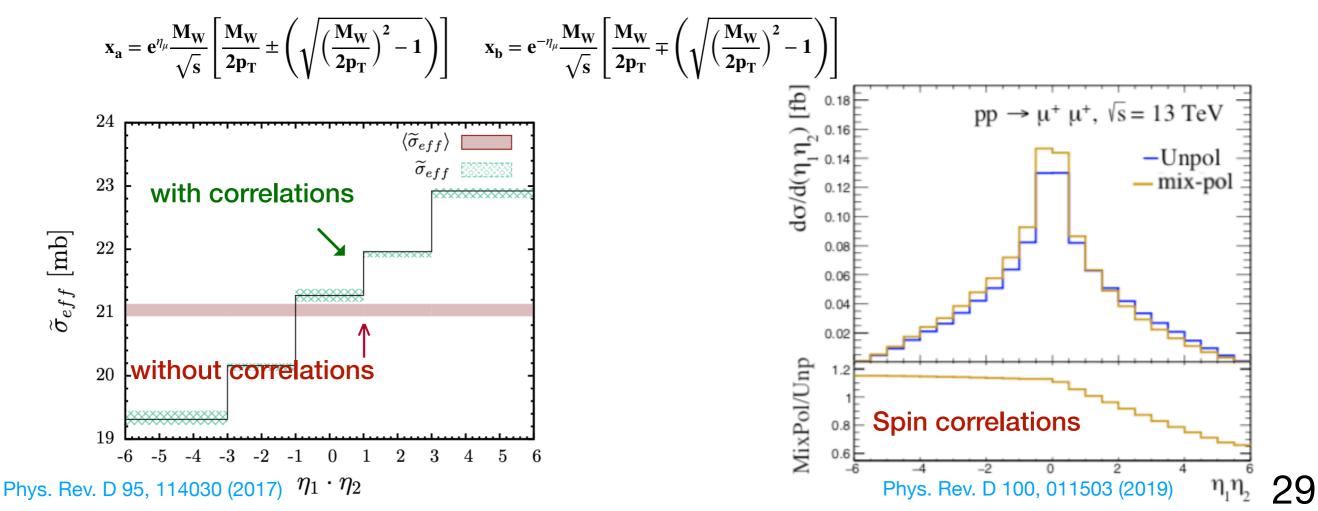
 $\sigma_{e\!f\!f}$: effective cross section for DPS


27

Eur.Phys.J.C 69(2010)53

DPS simulation models

- LO samples from Pythia/Herwig..., based on "Eikonal" model
 - SPS nPS, where N per event follows a Poisson distribution
 - Some differences between Herwig & Pythia as how the two interactions are correlated and to what extent
- Latest dPDF-based simulations (dShower) for W[±]W[±] production
 - Includes transverse parton correlations & parton splitting effects


 $\mathscr{A} = \frac{\sigma(\eta_{l1} \times \eta_{l1} < 0) - \sigma(\eta_{l1} \times \eta_{l1} > 0)}{\sigma(\eta_{l1} \times \eta_{l1} < 0) + \sigma(\eta_{l1} \times \eta_{l1} > 0)}$ $\mathscr{A} = 0 \implies \text{uncorrelated}$ $\mathscr{A} > 0 \implies \text{correlated}$

Beyond the factorization approach

- Factorization can't be the complete picture; dPDFs \neq pdf x pdf \forall x
 - Subtle hints from measurements
 - dPDFs must obey "sum" rules $x_1 + x_2 \le 1$, $\int_0^1 f_{u_v}(x, \mu^2) dx = 2$, $\int_0^1 f_{d_v}(x, \mu^2) dx = 1$.
- Lots of progress towards a more complete description of DPS
- Can we probe parton correlations using some kinematic variables?

η product of leptons in W[±]W[±]

Anatomy of a DPS analysis

- Target a final state
 - depends on the physics objective
 - either a process with high production cross section (multijets) or one with experimentally clean final state (W/Z/J/ψ)
- Signal modelling: data or simulation-based
- Background estimations: mostly similar to any SPS analysis
- Signal & background discrimination: single variables or MVA-based
- Extract production cross section for DPS by means of fit to data
- $\sigma_{\rm eff}$ computed using pocket formula
- Differential cross section measurements, if data sample is large enough

Systematic uncertainties: Z+jets

Observable/Uncertainty	$\Delta \phi(\mathbf{Z}, j_1)$	$\Delta_{\rm rel} p_{\rm T}({\rm Z}, j_1)$	$\Delta \phi(\mathbf{Z}, \mathrm{dijet})$	$\Delta_{\rm rel} p_{\rm T}(Z, {\rm dijet})$	$\Delta_{\rm rel} p_{\rm T}(j_1, j_2)$
JES	2.7–7.5%	2.4–7.4%	4.9–7.9%	4.5-8.4%	4.4–7.3%
JER	0.9–6.6%	1.4–5.8%	1.2–7.2%	2.1–5.1%	1.1–4.2%
Pileup jet identification	1.3–1.7%	0.9–1.6%	1.7–2.1%	1.6-2.1%	1.7–2.3%
Integrated luminosity	2.5%	2.5%	2.5%	2.5%	2.5%
Pileup modelling	0.1–0.7%	0.2–1.0%	0.2–1.4%	0.4–1.4%	0.8–1.4%
Closure uncertainty	0.6–4.0%	0.8–5.1%	2.7-6.1%	2.2-8.7%	2.2-8.7%
Muon selection	<1.0%	<1.0%	<1.0%	<1.0%	<1.0%
Background modelling	<0.2%	<0.2%	<0.6%	<0.6%	$<\!0.4\%$
Total	4–11%	4–10%	8–14%	8–14%	7–11%

Table 3: Uncertainty sources and their effect on the differential cross section distributions.

Table 4: Uncertainty sources and their effect on the area-normalized distributions.

Observable/Uncertainty	$\Delta \phi(\mathbf{Z}, j_1)$	$\Delta_{\rm rel} p_{\rm T}({\rm Z}, j_1)$	$\Delta \phi(\mathbf{Z}, \mathrm{dijet})$	$\Delta_{\rm rel} p_{\rm T}({\rm Z},{\rm dijet})$	$\Delta_{\rm rel} p_{\rm T}(j_1, j_2)$
JES	0.1–3.8%	0.7–3.7%	0.6-4.0%	0.3–2.6%	0.3–1.5%
JER	0.3–4.6%	0.4 - 4.4%	1.3-4.4%	0.2–4.8%	0.2–1.7%
Pileup jet identification	0.1–0.2%	0.1–0.2%	0.1–0.2%	0.1–0.2%	0.1–0.4%
Pileup modelling	0.1–0.5%	0.1–0.5%	0.1–1%	0.1–0.8%	0.2–0.4%
Closure uncertainty	0.8–2.5%	0.9–3.6%	0.3–5.0%	0.4–6.7%	0.5–3.7%
Muon selection	<1.0%	<1.0%	<1.0%	<1.0%	<1.0%
Background modelling	<0.1%	<0.1%	<0.2%	<0.2%	<0.2%
Total	1–6%	1–6%	2–7%	1–7%	1–4%