Probing new physics with top quarks at LHC

Dr. Soureek Mitra Institute of Experimental Particle Physics (ETP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Karlsruher Institut für Technologie

DAE HEP 2022, IISER Mohali

The top quark

- Heaviest known elementary particle 0 $(m_t \sim 172 \text{ GeV}) \rightarrow \text{largest coupling}$ to the Higgs boson
- Discovered 27 years ago at 0 TeVatron, Fermilab, USA
- Sensitive to stability of EW vacuum
- Decays almost exclusively to *bW* pair
- Unique behavior: Tdecay (≈10⁻²⁵ s) < T_{had}. (≈10⁻²⁴ s) → access to bare quark properties via its daughters

 $\Delta M_W \propto m_t^2$

- Higgs Potential: $V(\phi) = -\mu_H^2 \phi^{\dagger} \phi +$ $\lambda_H (\phi^{\dagger} \phi)^2$
- Mexican hat only if $\lambda_H > 0$

m_t and EWSB

• λ_H receives radiative corrections from all SM particles \rightarrow mostly from top quark $\Rightarrow \Delta \lambda_H \propto m_t^4$ Н Н

Evolve λ_H up to Planck scale (~10¹⁹ GeV)

Knowing *m_t* accurately might just reveal the fate of our universe

 Life becoming difficult at EW sector with the new CDF measurement of m_W

 \rightarrow 6.8 σ deviation from prediction (Blue Band)

- SM predictions consistent with LEP + LHC measurements
- Using mt from CMS-PAS-TOP-20-008 the deviation is even larger (Green Band)
- and harmonize PDF+generators usage in different measurements before combination

Α

m_W conundrum

Top portal to new physics - direct search strategy

- New resonance such as VLQ with $m < E_{LHC}$ decaying to top quarks
- Accessible at LHC
- Can attempt for a direct search
- Dependent on the new physics model

- New search from ATLAS in the mono-top final state
- Benchmark scenario: $k_T = 0.5$ and BR (T \rightarrow tZ)= 25%
- $m_T > 2.2 \text{ TeV} @ 95\% \text{ CL} (Gain by 500 \text{ GeV} !)$

ATLAS-CONF-2022-036

Top portal to new physics - indirect search strategy

• New physics scale out of range $\Lambda \gg E_{LHC}$

• Expand SM:
$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i \mathcal{O}_i^D}{\Lambda^{D-4}}$$
 (D = 6 so far)

- Wilson coefficients C_i modify SM vertices
 - Deviations from SM in precision measurements
- Independent of new physics model
- In the top sector, EFT effects visible in various final states: $t\overline{t}, t\overline{t}V, t\overline{t}q\overline{q}, tZq$ etc.
- Two ways of using EFT:
 - Re-parametrization of cross section measurements
 - Dedicated estimation of EFT couplings

This talk primarily focusses on <u>this approach</u> for probing physics beyond the SM

6

LHC - The top Factory

tt production

- Theoretical uncertainties due to variations in $\mu_R \& \mu_F$ scales, PDF and $\alpha_{\rm S}$
- Most precise (2.4%) inclusive $\sigma_{t\bar{t}}$ meas. (EPJC 80 (2020) 528) in events with OS eµ pair + 1 or 2 b-tagged jets

 $\sigma_{t\bar{t}} = 826.4 \pm 3.6 \,(\text{stat}) \,\pm 11.5 \,(\text{syst}) \,\pm 15.7 \,(\text{lumi}) \,\pm 1.9 \,(\text{beam}) \,\text{pb}$

- **Dominant systematics:**
 - Luminosity(1.9%)
 - $\rightarrow tW$ bkg. cross-section (0.52%)
 - ➤ hadronization model (0.49%)
 - → PDF (0.45%)

➤ ISR/FSR model (0.45%)

 $\sigma_{t\bar{t}} = 887^{+43}_{-41}(\text{stat} + \text{syst}) \pm 53(\text{lumi})\text{pb}@13.6\text{TeV}$

CMS-PAS-TOP-22-012

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TtbarNNLO

\sqrt{s}	$\sigma_{\rm tt^-}$ (NNLO + NNLL)
7 TeV	$177.3^{+10.1}_{-10.8}$ pb(6.6%)
8 TeV	252.9 ^{+15.3} pb(6.2%)
13 TeV	831.8 ^{+45.5} pb(5.7%)

LHCTOPWGSummaryPlots

New

$t\bar{t}$ asymmetry at LHC

9

- Production of top quark pairs charge symmetric at LO
- No charge asymmetry in $gg \rightarrow tt^-$ at all orders \Rightarrow dilutes measurable asymmetry
- Small charge asymmetry at NLO due to QCD qq⁻ annihilation allowed in SM

interference between tree and box diagram interference between gluon ISR and FSR diagrams

- LHC, a pp collider ➤ no preferential direction for the incoming (anti-) partons
- High momenta valence quarks collide with lower momenta sea anti-quarks - More forward top quarks & more central anti-top quarks leading to charge asymmetry (A_c)

$$A_{C} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}, \Delta|y| =$$

• New Physics models can enhance $A_c \rightarrow$ indirect search for new physics

- [750,900]or > 900GeV

Search for CP violation in *tt* **lepton + jets events** BSM interaction modifies tg coupling 138 fb⁻¹ (13 TeV)

 $rac{ref}{r$ possible source of CP violation in strong interaction

Following Dim-6 operators are considered $O_3 = Q_\ell \epsilon(p_{\mathrm{b}}, p_{\overline{\mathrm{b}}}, p_\ell, p_{j_1}) \propto Q_\ell \vec{p}_{\mathrm{b}}^* \cdot (\vec{p}_\ell^* \times \vec{p}_{j_1}^*),$ $O_6 = Q_\ell \epsilon(P, p_b - p_{\overline{b}}, p_\ell, p_{i_1}) \propto Q_\ell(\vec{p}_b - \vec{p}_{\overline{b}}) \cdot (\vec{p}_\ell \times \vec{p}_{i_1}),$ $O_{12} = q \cdot (p_{\rm b} - p_{\overline{\rm b}}) \epsilon (P, q, p_{\rm b}, p_{\overline{\rm b}}) \propto (\vec{p}_{\rm b} - \vec{p}_{\overline{\rm b}})_z \cdot (\vec{p}_{\rm b} \times \vec{p}_{\overline{\rm b}})_z,$ $O_{14} = \epsilon(P, p_{\mathrm{b}} + p_{\overline{\mathrm{b}}}, p_{\ell}, p_{j_1}) \propto (\vec{p}_{\mathrm{b}} + \vec{p}_{\overline{\mathrm{b}}}) \cdot (\vec{p}_{\ell} \times \vec{p}_{j_1}).$

$$(O_i) = \frac{N_{\text{events}}(O_i > 0) - N_{\text{events}}(O_i < 0)}{N_{\text{events}}(O_i > 0) + N_{\text{events}}(O_i < 0)}, \quad i = 3, 6, 12, 1$$

CEDM contribution can be ~ 8% & 0.4% for $A_{CP}(O_3)$ & $A_{CP}(O_{12})$ **CMS-TOP-20-005**

Search for CP violation in *tt* **lepton + jets events**

$$\chi^2 = \left(\frac{m_{\rm jjb} - m_{\rm t}}{\sigma_{\rm t}}\right)^2 + \left(\frac{m_{\rm jj} - m_{\rm W}}{\sigma_{\rm W}}\right)^2$$

• Hadronic top quark reco. based on min. χ^2

- Data-driven bkg. estimation
- ML fit to data using the $m_{\ell b}$ template
- Measured A'_{CP} calibrated w.r.t A_{CP} at truth level
- d_{tG} determined from A_{CP} : $A_{CP} = \frac{d_{tG} + a}{bd_{tG}^2 + cd_{tG} + d}$
- $d_{tG} = 0.04 \pm 0.10(\text{stat}) \pm 0.07(\text{syst})$

reflect consistent with SM prediction $d_{tG} = 0$

Inclusive and differential *tty* cross section - 2*l*

- NLO prediction: $\sigma_{t\bar{t}\gamma} = 155 \pm 27 \text{fb}[p_T(\gamma) > 20 \text{GeV} |\eta(\gamma)| < 1.442]$
- Exactly 1 γ , exactly 2 OS ℓ , \geq 1 b-tagged jet in the final state + Bkgs.: Non-prompt γ (data-driven), $Z\gamma$ (from Z peak), others from simulation
- Measured: $\sigma_{t\bar{t}\gamma} = 175.2 \pm 2.5(\text{stat}) \pm 6.3(\text{syst})\text{fb}(4\%)$ Dominant sources: Luminosity, signal model, bkg. normalization
- Differential measurements used to extract combined ($2\ell \& \ell + jets$) limits on EFT coupling C_{tZ}

QCD

EWK

- Prediction: $\sigma_{t\bar{t}t\bar{t}} = 12 \text{fb} \pm 20\% \text{JHEP 02 (2018) 0}$
- Final state consists of 4 b-jets, other jets and leptons 0

1ℓ or 2ℓ (OS)	SSML: 2ℓ(SS) or ≥ 3ℓ
Combined BR ~ 57%	Combined BR ~13%
Dominant tt ⁻ + HF bkg.	Dominant tt ⁻ V bkg
Negligible fake or non-prompt ℓ	Fake or non-prompt <i>l</i> signific

Four-fermion EFT coupling

ant

Topology	Branching ratio
0ℓ	31%
1 <i>ℓ</i>	42%
2ℓ(OS)	14%
2ℓ(SS)	7%
\geq 3 ℓ	5%

- Extensive use of MVA techniques to extract signal in both types of final states
- SSML: limits on top-Yukawa coupling
- $1\ell/2\ell$ OS : EFT interpretation with limits on 0 Wilson coefficients

- First time the all-hadronic channel is used in 4 top searches!
- Fit to BDT score for signal / multijet separation
- Event categories of based on resolved / boosted top candidates and H_T
- Data-driven estimation of multijet / tt+jets backgrounds 0

<u>JHEP 11 (2019) 082</u>

Operator	Expected C_k / Λ^2 (TeV ⁻²)	Observed (TeV $^{-2}$)
$\mathcal{O}_{\mathrm{tt}}^1$	[-2.0, 1.9]	[-2.2, 2.1]
$\mathcal{O}_{\mathrm{QQ}}^{1}$	[-2.0, 1.9]	[-2.2, 2.0]
\mathcal{O}_{Qt}^1	[-3.4, 3.3]	[-3.7, 3.5]
$\mathcal{O}_{\mathrm{Ot}}^{8}$	[-7.4, 6.3]	[-8.0, 6.8]

Production of 4 tops ($t\bar{t}t\bar{t}$ **)**

CMS-PAS-TOP-21-005

LHCTOPWGSummaryPlots

Lepton flavor universality using tt events

$$R(\tau/\mu) = B(W \to \tau\nu)/B(W \to \mu\nu)$$

- Previous LEP result 2.7 σ away from SM prediction
- Measurement in *tt*⁻ dilepton events using Tag&Probe \rightarrow tight e/ μ , check second μ
- <u>Impact parameter</u> (d_0) discriminant low d₀ : Likely $W \rightarrow \mu$ high d_0 : Likely W $\rightarrow \tau \rightarrow \mu$
- d_0 calibrated using $Z \rightarrow \mu \mu$
- Most Precise result : Unc. dominated by syst.

 $R(\tau/\mu) = 0.992 \pm 0.007(\text{stat}) \pm 0.011(\text{syst}) = 0.992 \pm 0.013$

- Dominant syst. sources
 - \rightarrow d_o template modelling
 - \rightarrow μ isolation and reconstruction

NP 17, 813–818 (2021)

Electroweak production

LHCTOPWGSummaryPlots

s-channel (~ 3% at LHC) **Challenging at LHC**

 $\sigma \propto |V_{\rm tb}|^2$

 $|f_{LV}V_{tb}| = \sqrt{\frac{\sigma_{meas.}}{\sigma_{theo.}(|V_{tb}| = 1)}}, \text{Assuming}|V_{td}|, |V_{ts}| \ll |V_{tb}|$ $f_{LV} \text{ accounts for possible BSM contribution} \neq f_{LV} = 1 \text{ for SM}$ $\sigma_{t+\bar{t}}^{t-ch}(13\text{TeV}) = 207 \pm 2(\text{stat}) \pm 31(\text{syst})\text{pb} = 207 \pm 31\text{pc}$

PLB 800 (2019) 135042

Test of CPT invariance in single top events

- LHC \equiv top quark Factory \Rightarrow precision lab for studying top quark production and properties \Rightarrow portal to new physics beyond SM
- Most measurements agree with SM prediction within uncertainties
- Provides good understanding of the various modeling aspects such as PDF, PS, UE and CR etc.
- Stringent limits on couplings are placed with EFT interpretation using Run2 data
- Rare processes involving top quarks waiting to be fully exploited during Run3 and HL-LHC
- More information : <u>ATLAS Top Public Results</u>, <u>CMS Top</u> Public Results, LHC Top WG

Summary

Thank you for your attention

Back up

- $\sigma_{t\bar{t}\nu} = 773 \pm 135 \text{fb}[p_T(\gamma) > 20 \text{GeV} |\eta(\gamma)| < 1.442]$ NLO Prediction:
- Final state consists of exactly 1 γ , exactly 1 ℓ , \geq 3 jets, \geq 1 b-tagged jet
- Measured inclusive cross section:
- Differential measurements used to extract limits on EFT coupling Ctz

Inclusive and differential $tt^-\gamma$ cross section - ℓ + jets

	G	Generaletien	Uncertaint	y [%]
	Source	Correlation	Prefit range	Postfit
	Integrated luminosity	\sim	1.3 - 3.2	1.7
	Pileup	\checkmark	0.1 - 1.4	0.7
_	Trigger efficiency	×	0.6 - 1.7	0.6
nta.]	Electron selection efficiency	\sim	1.0 - 1.3	1.0
mei	Muon selection efficiency	\sim	0.3 - 0.5	0.5
peri	Photon selection efficiency	\sim	0.4 - 3.6	1.1
Ë	Electron & photon energy	\checkmark	0.0 - 1.1	0.1
	Jet energy scale	\sim	0.1 - 1.3	0.5
	Jet energy resolution	\checkmark	0.0 - 0.6	< 0.1
	b tagging efficiency	\sim	0.9 - 1.4	1.1
	L1 prefiring	\checkmark	0.0 - 0.8	0.3
	Values of $\mu_{\rm F}$ and $\mu_{\rm R}$	\checkmark	0.3 - 3.5	1.3
cal	PDF choice	\checkmark	0.3 - 4.5	0.3
reti	PS modelling: ISR & FSR scale	\checkmark	0.3 - 3.5	1.3
leoi	PS modelling: colour reconnection	\checkmark	0.0 - 8.4	0.2
I	PS modelling: b fragmentation	\checkmark	0.0 - 2.2	0.7
	Underlying-event tune	\checkmark	0.5	0.5
æ	$Z\gamma$ correction & normalization	\checkmark	0.0 - 0.2	0.1
m	tγ normalization	\checkmark	0.0 - 0.9	0.8
kgr($Other + \gamma normalization$	\checkmark	0.3 - 1.0	0.8
3acl	Nonprompt γ normalization	\checkmark	0.0 - 1.8	0.7
Г	Size of background samples	×	1.5 - 7.6	0.9
	Total systematic uncertainty			3.6
	Statistical uncertainty			1.4
	Total uncertainty			3.9

JHEP 05 (2022) 091

JHEP 12 (2021) 161

Source		δm_{l^\pm}	δm_{l^+}	δm_{l^-}		
Statistical		±0.19	± 0.23	±0.33		
Statistical + profiled systematic		± 0.32	± 0.37	± 0.58		
	Correlation group intercalibration	± 0.09	± 0.07	± 0.12	NP 17, 813–818 (20	21)
IES	Correlation group MPFInSitu	± 0.02	± 0.02	± 0.01		
JLO	Correlation group uncorrelated	± 0.39	± 0.17	± 0.83		
	Total (quadrature sum)	± 0.40	± 0.18	± 0.84	Source	Impost on I
JER		< 0.01	< 0.01	< 0.01	Source	impact on r
Unclustered energy		< 0.01	< 0.01	< 0.01	Drompt d^{μ} tomplated	0.0029
Muon efficiencies		< 0.01	< 0.01	< 0.01	Prompt a_0^r templates	0.0056
Electron efficiencies		± 0.01	± 0.01	± 0.01	$\mu_{(n)}$ and $\mu_{(-)}$ parton shower variations	0.0036
Pileup		± 0.14	± 0.04	± 0.34	$\mu(prompt)$ and $\mu(\tau \rightarrow \mu)$ parton bio wor variations	0.005
b tagging		± 0.20	± 0.18	± 0.22	Muon isolation efficiency	0.003.
QCD multijet background		± 0.02	± 0.01	± 0.02	Muon identification and reconstruction	0.0020
Mass calibration		± 0.11	± 0.13	± 0.20	Muon identification and reconstruction	0.0050
CR model and ERD		< 0.01 +0.24 (0.017)	< 0.01 +0.39 (0.027)	± 0.01 $\pm 0.68 (0.048)$	$\mu_{(had)}$ normalisation	0.0028
	Gluon	+0.52	+0.75	-0.03	tt scale and metching variations	0.002
	Light quark (uds)	-0.18	+0.18	-0.23	It scale and matching variations	0.002
Flavor-dependent JES	Charm	+0.01	+0.08	+0.11	Top $p_{\rm T}$ spectum variation	0.0020
1 ,	Bottom	-0.48	-0.29	-0.31		0.002
	Total (linear sum)	-0.13	+0.72	-0.46	$\mu_{(had.)}$ parton shower variations	0.002
	b frag. Bowler–Lund	± 0.03	± 0.06	± 0.08	Monte Carlo statistics	0.0019
b quark hadronization model	b frag. Peterson	+0.14	+0.11	+0.19	With Carlo statistics	0.0010
b quark maaromzation model	Semileptonic b hadron decays	± 0.18	± 0.17	± 0.19	Pile-up	0.0017
	Total (quadrature sum)	+0.23 - 0.18	+0.21 - 0.18	+0.28 - 0.21	μ	0.001/
	ISR	± 0.01	± 0.01	< 0.01	$\mu_{(\tau \to \mu)}$ and $\mu_{(had.)} d_0$ snape	0.001
	FSR	± 0.28	± 0.31	± 0.20	Other detector systematic uncertainties	0.0016
Signal modeling	$\mu_{\rm R}$ and $\mu_{\rm F}$ scales	± 0.09	± 0.13	± 0.03		0.0010
	$PDF+\alpha_S$	± 0.06	± 0.06	± 0.07	Z+jet normalisation	0.0009
	Iotal (quadrature sum)	± 0.30	± 0.34	± 0.21	Other courses	0.000
	ISK	$\pm 0.11 (0.008)$ $\pm 0.10 (0.007)$	$\pm 0.02 (0.001)$ $\pm 0.14 (0.010)$	$\pm 0.22 (0.016)$ $\pm 0.40 (0.028)$	Other sources	0.000^{2}
	MF-PS matching scale	$\pm 0.10(0.007)$ $\pm 0.10(0.007)$	$\pm 0.14 (0.010)$ $\pm 0.10 (0.006)$	$\pm 0.40(0.028)$ $\pm 0.10(0.008)$	$B(\tau \rightarrow \mu \nu_{\tau} \nu_{\mu})$	0.0023
	$u_{\rm P}$ and $u_{\rm T}$ scales	$\pm 0.10(0.007)$ ± 0.03	$\pm 0.10(0.000)$ ± 0.03	$\pm 0.10(0.000)$ ± 0.01	$\mathcal{L}(\mathbf{r} + \mu r (\mathbf{r} \mu))$	0.002
tt modeling	$PDF + \alpha_S$	< 0.01	< 0.01	< 0.01	Total systematic uncertainty	0.0109
	Top quark $p_{\rm T}$ reweighting	-0.04	-0.08	-0.04		0.007
	UE	$\pm 0.07~(0.005)$	$\pm 0.04~(0.003)$	$\pm 0.17~(0.012)$	Data statistics	0.0072
	Total (quadrature sum)	±0.20	+0.18 - 0.20	± 0.50	T -4-1	0.012
	Signal shape	± 0.05	± 0.03	± 0.04	Iotal	0.013
Parametric chance	tī bkg. shape	± 0.07	± 0.04	± 0.05		
i arametric shapes	EW bkg. shape	± 0.03	± 0.01	± 0.02		
	Total (quadrature sum)	± 0.09	± 0.05	± 0.07		
Total externalized systematic		+0.69 - 0.71	+0.97 - 0.65	+1.32 - 1.39		
Grand total		+0.76 -0.77	+1.04 - 0.75	$+1.44 \ -1.51$		

Systematic sources		$A'_{\rm CP}$	(%)	
	O_3	<i>O</i> ₆	<i>O</i> ₁₂	<i>O</i> ₁₄
Pileup h tagging scale factor	-0.0008 + 0.0010 + 0.0002	-0.0003 + 0.0007 + 0.0001	+0.0023 -0.0017	+0.0040 -0.0044
b tagging scale factor b tagging scale factor	$+0.0002 \\ -0.0002 \\ -0.0003$	+0.0001 -0.0003 -0.0003	< 0.0001 < 0.0001 < -0.0001 - 0.0009	$< 0.0001 \\ -0.0002 \\ -0.0007$
(light-flavor quarks and gluons) Lepton efficiencies	$^{+0.0004}_{-0.0002}$ $^{+0.0002}$	$< 0.0001 \\ -0.0001 \\ -0.0001$	$+0.0007 \\ -0.0001 \\ < 0.0001$	$^{+0.0005}_{-0.0004}_{+0.0001}$
Jet energy resolution	-0.0028 -0.0029 -0.0051	-0.0069 + 0.0032 - 0.0046	$-0.002\overline{4}$ -0.0021 -0.0046	-0.0070 +0.0026 -0.0062
Jet energy scale	-0.0031 -0.0018	+0.0040 $+0.0065$	+0.0011	+0.0002 $+0.0041$
Background template	+0.0061	+0.0050	+0.0139	+0.0016
PDF	+0.0008 -0.0008	-0.0008 + 0.0006	+0.0003 -0.0004	+0.0003 -0.0006
QCD renormalization	+0.0008	+0.0008	+0.0013	+0.0007
and factorization Initial-state	+0.0012 + 0.0006	$-0.0002 \\ -0.0005$	-0.0033 + 0.0017	-0.0004 + 0.0024
QCD radiation Final-state	$-0.0004 \\ -0.0001$	$+0.0004 \\ -0.0215$	-0.0015 + 0.0053	$-0.0021 \\ -0.0129$
QCD radiation	$-0.0008 \\ -0.0162$	$^{+0.0122}_{-0.0186}$	-0.0017 + 0.0091	$^{+0.0060}_{-0.0384}$
Color reconnection	${<}0.0001 \\ {-}0.0235$	$-0.0206 \\ -0.0043$	$-0.0464 \\ -0.0185$	$+0.0304 \\ +0.0352$
Underlying event	$+0.0399 \\ -0.0515 \\ 0.0000$	$+0.0177 \\ -0.0576 \\ +0.0255$	$+0.0139 \\ -0.0082 \\ +0.0218$	+0.0376 +0.0116 +0.0424
Flavor response	$-0.0099 \\ -0.0017 \\ -0.0024$	$+0.0355 \\ -0.0007 \\ +0.0024$	+0.0218 -0.0033 -0.0004	$+0.0424 \\ -0.0105 \\ +0.0070$
Top quark	+0.0049	+0.0152	+0.0119	+0.0082
Per-event resolution	-0.0179 -0.0027 -0.0004	$-0.00110 \\ -0.0022 \\ +0.0040$	+0.0097 +0.0023 +0.0014	$-0.0040 \\ -0.0005 \\ +0.0048$
W+HF fraction	-0.0174	-0.0132	-0.0102	-0.0098

S-TOP-20-005

CP observable	A _{CP} (%)	d _{tG}
O_3	$-0.10 \pm 0.20 \pm 0.14$	$+0.04 \pm 0.11$ =
O_6	$-0.30 \pm 0.21 \pm 0.16$	$+0.25 \pm 0.20$ =
<i>O</i> ₁₂	$+0.12 \pm 0.13 \pm 0.07$	$+0.45\pm0.47$:
O_{14}	$-0.29 \pm 0.16 \pm 0.14$	-0.81 ± 0.48 =

Science 376, 170 (2022)

Source	Uncertainty (MeV)
Lepton energy scale	3.0
Lepton energy resolution	1.2
Recoil energy scale	1.2
Recoil energy resolution	1.8
Lepton efficiency	0.4
Lepton removal	1.2
Backgrounds	3.3
$p_{\rm T}^{\rm Z}$ model	1.8
p_T^W/p_T^Z model	1.3
Parton distributions	3.9
QED radiation	2.7
W boson statistics	6.4
Total	9.4

CMS-TOP-21-014

PLB 808 (2020) 135609

	1	3	TeV)
--	---	---	------

Treatment	Uncertainty	$\Delta \sigma_{ST_{b,l}}$
	Lepton trigger and reconstruction	Ó
Drofiled	Limited size of simulated event samples	3
	t ī modelling	0
	Pileup	0
	QCD background normalisation	0
riomeu	W+jets composition	0
	Other backgrounds μ_R/μ_F	0
	PDF for background processes	0
	b tagging	0
	Total profiled	
	Integrated luminosity	
	JER	
Nonprofiled	JES	8
	PDF for signal process	
	Signal $\mu_{\rm R}/\mu_{\rm F}$	
	ME-PS matching	
	Parton shower scale	6
	Total nonprofiled	1
Total uncerta:	inty	1

 $\sigma / \sigma (\%)$).50 3.13).66).35).08).13).44).42).73 3.4 2.5 2.8 8.0 3.8 2.4 3.7 6.1 1.52.0

Source	Uncertainty	Process	Final state
Normalization only			
Luminosity	1-2%	All	All
Electron Id/Isolation/Trigger	3%	All	OSDL+SI
Muon Id/Isolation/Trigger	3%	All	OSDL+SI
Modelling $t\bar{t} + HF$	4-8%	$t\overline{t}+b\overline{b}$	OSDL+SI
ME-PS matching	+7.5%/-9.6%	tŦ	OSDL
Cross section $t\bar{t} + b\bar{b}$	+4.8%/-5.5%	tī +bb	OSDL+SI
Cross section $t\bar{t}$ +light jets	+4.8%/-5.5%	tī +light jets	OSDL+SI
Cross section TOP	4%	TOP	SL
Cross section $t\bar{t}$ +H	20%	tī H	All
Cross section $t\bar{t} + V$	50%	tī V	OSDL
Cross section $t\bar{t}$ +rare	50%	tt Rare	OSDL
Cross section EWK	3.8%	EWK	OSDL+SI
Shape and Normalization			
Prefire	$\pm \sigma$	All	All, 2016+2017
Pileup	$\sigma_{ m minbias} \pm 4.6\%$	All	All
Jet Energy Scale	$\pm \sigma(p_T, \eta)$	All	All
Jet Energy Resolution	$\pm \sigma(\eta)$	All	All
DeepCSV tagging	$\pm \sigma(p_T)$	All	SL
DeepCSV tagging stats	$\pm \sigma$	All	SL
DeepJet tagging	$\pm \sigma$	All	OSDL, hadro
DeepJet tagging stats	$\pm \sigma$	All	OSDL, hadro
resolved t tagging: statistical	$\pm \sigma$	All	SL, hadron
resolved t tagging: CS purity	$\pm \sigma(p_T)$	All	SL
resolved t tagging: closure	$\pm \sigma(N_{jet})$	All	SL
PDF	$\pm\sigma$	tī	All
Renorm./Fact. Energy Scale	envelope($\times 2, \times 0.5$)	All	SL, hadron
Renorm./Fact. Energy Scale	$\times 2$, $\times 0.5$	All	OSDL
Shape only			
ISR	$\pm \sigma$	All	All
FSR	$\pm \sigma$	All	All

CMS-PAS-TOP-21-005

Summary of *tt⁻V* measurements

LHCTOPWGSummaryPlots

LHCTOPWGSummaryPlots

ATLAS+CMS Preliminary

November 2022

	(Top) quark	- vector boson operators	- Individual limits	Following arXiv:1802.0723	7
	AS	ATLAS+CMS	CMS	Dimension 6 operators $C_i \equiv$	$\equiv C_i/\Lambda^2$
				$CMS t Z a/t \overline{t} Z [1]$	138 fb-
				CMS, $tZq/tZ [1]$	137 fb ⁻
Ĉ				CMS, $t\bar{t}$ [2]	78 fb ⁻
\mathbf{O}_{tZ}			_	CMS, $t\bar{t} + Z/W/H$, tZa , tHa [4]	42 fb ⁻
				CMS, $t\bar{t}$ + boosted Z/H [5]	138 fb ⁻
$ ilde{C}^{[I]}_{t, \vec{z}}$				CMS, $t\bar{t}\gamma$ [2]	137 fb ⁻
- [Z				CMS, <i>tt</i> Z [3]	01 8 V
Ĉ _{t₿} ──				ATLAS, <i>tĪZ</i> [6]	36 fb ⁻
				CMS, <i>tZq/tĪZ</i> [1]	138 fb ⁻
				CMS, $t\bar{t} + Z/W/H$, tZq , tHq [4]	42 fb ⁻
				CMS, $t\bar{t}$ + boosted Z/H [5]	138 fb ⁻
\tilde{C}_{tW}				ATLAS, <i>tĪZ</i> [6]	36 fb ⁻
				ATLAS, Top polarization [7]	139 fb ⁻
				ATLAS+CMS, W helicity [8]	20+20 fb ⁻
				CMS, $t\bar{t}$ and tW , BSM search [9]	36 fb ⁻
$ ilde{C}^{[I]}_{tW}$				ATLAS, Top polarization [7]	139 fb ⁻
$ ilde{C}_{bW}$				CMS, $t\bar{t} + Z/W/H$, tZq , tHq [4] CMS, $t\bar{t}$ + boosted Z/H [5]	42 fb 138 fb
$ ilde{C}_{tG}/ extsf{g}_S$				ATLAS, $t\bar{t} \ell$ + jets boosted [10]	139 fb ⁻
				CMS, $t\bar{t} + Z/W/H$, tZq , tHq [4]	42 fb ⁻
				CMS, $t\bar{t}$ and tW , BSM search [9]	36 fb ⁻
$ ilde{C}_{tG}$				ATLAS, $t\bar{t}$ rapidity asymmetry [11]] 139 fb [−]
				CMS, <i>tī</i> dilepton [12]	36 fb ⁻
				CMS, <i>tt</i> spin correlations [13]	36 fb ⁻
$ ilde{C}^{[I]}_{tG}$				CMS, <i>tī</i> spin correlations [13]	36 fb [−]
[1] JHI [2] JHI [3] JHI [4] JHI [5] arX	EP 12 (2021) 083 EP 05 (2022) 091 EP 03 (2020) 056 EP 03 (2021) 095 (iv:2208.12837 *	[6] PRD 99 (2019) 072009 [7] arXiv:2202.11382 * [8] JHEP 08 (2020) 051 [9] EPJC 79 (2019) 886 [10] arXiv:2202.12134 *	[11] arXiv:2208.12095 * [12] JHEP 02 (2019) 149 [13] PRD 100 (2019) 072002 * Preliminary	EFT formalism is employed at different levels experimental analyses	of
	-4	-2 0	2 4 6	6	
		95% CL limit [TeV $^{-2}$]			

ATLAS+CMS Preliminary

- ATLAS		on operators - individu	al limits	CI	Following arXiv:1802.07237 MS Dimension 6 operators $\tilde{C}_i \equiv C$	C_i/Λ^2
\tilde{C}_{tt}^{1}					CMS, 4 top quarks [1]	36 fb
\tilde{C}^1_{Qt}	-		-		CMS, 4 top quarks [1]	36 fb
\tilde{C}^{1}_{QQ}					CMS, 4 top quarks [1]	36 fb
\tilde{C}_{Qt}^{8} –				•	CMS, 4 top quarks [1]	36 fb
<i>Č</i> ^{3(/)}					CMS, $t\bar{t} + Z/W/H$, tZq , tHq [2]	42 fb
$ ilde{C}_{QI}^{-(I)}$					CMS, $t\bar{t} + Z/W/H$, tZq , tHq [2]	42 fb
$ ilde{C}^{(l)}_{Qe}$					CMS, $t\bar{t} + Z/W/H$, tZq , tHq [2]	42 fb
$ ilde{C}_{t\prime}^{(\prime)}$					CMS, $t\bar{t} + Z/W/H$, tZq , tHq [2]	42 fb
$ ilde{C}_{te}^{(l)}$					CMS, $t\bar{t} + Z/W/H$, tZq , tHq [2]	42 fb
$\tilde{C}_t^{S(l)}$					CMS, $t\bar{t} + Z/W/H$, tZq , tHq [2]	42 fb
$\tilde{C}_t^{T(l)}$					CMS, $t\bar{t} + Z/W/H$, tZq , tHq [2]	42 fb
$ ilde{C}^{11}_{Qq}$					ATLAS, $t\bar{t}$ rapidity asymmetry [3] ATLAS, $t\bar{t}$ + jet energy asymmetry [4]	139 fb 139 fb
$ ilde{C}^{18}_{Qq}$					ATLAS, $t\bar{t}$ rapidity asymmetry [3] ATLAS, $t\bar{t}$ + jet energy asymmetry [4] ATLAS, $t\bar{t}$ all-hadronic boosted [5]	139 fb 139 fb 139 fb
$ ilde{C}^1_{tq}$					ATLAS, $t\bar{t}$ rapidity asymmetry [3] ATLAS, $t\bar{t}$ + jet energy asymmetry [4]	139 fb [—] 139 fb [—]
$ ilde{C}^8_{tq}$					ATLAS, $t\bar{t}$ rapidity asymmetry [3] ATLAS, $t\bar{t}$ + jet energy asymmetry [4] ATLAS, $t\bar{t}$ all-hadronic boosted [5] ATLAS, $t\bar{t} \ell$ + jets boosted [6]	139 fb 139 fb 139 fb 139 fb
$ ilde{C}^1_{tu}$		—			ATLAS, $t\bar{t}$ rapidity asymmetry [3] ATLAS, $t\bar{t}$ + jet energy asymmetry [4]	139 fb 139 fb
$ ilde{C}^1_{td}$					ATLAS, <i>tī</i> rapidity asymmetry [3]	139 fb
$ ilde{C}^8_{tu}$					ATLAS, <i>tī</i> rapidity asymmetry [3] ATLAS, <i>tī</i> + jet energy asymmetry [4] ATLAS, <i>tī</i> all-hadronic boosted [5]	139 fb 139 fb 139 fb
$ ilde{C}^8_{td}$					ATLAS, <i>tī</i> rapidity asymmetry [3] ATLAS, <i>tī</i> all-hadronic boosted [5]	139 fb [—] 139 fb [—]
$ ilde{C}^8_{Qd}$					ATLAS, $t\bar{t}$ rapidity asymmetry [3] ATLAS, $t\bar{t}$ all-hadronic boosted [5]	139 fb 139 fb
$ ilde{C}^8_{Qu}$					ATLAS, $t\bar{t}$ rapidity asymmetry [3] ATLAS, $t\bar{t}$ all-hadronic boosted [5]	139 fb 139 fb
$ ilde{C}^1_{Qu}$		-			ATLAS, <i>tī</i> rapidity asymmetry [3]	139 fb
$ ilde{C}^1_{Qd}$		-			ATLAS, <i>tī</i> rapidity asymmetry [3]	139 fb
$ ilde{C}^{38}_{Qq}$		-			ATLAS, <i>tī</i> rapidity asymmetry [3] ATLAS, <i>tī</i> all-hadronic boosted [5]	139 fb 139 fb
[1] JHEP 11 (2 [2] JHEP 03 (2 [3] arXiv:2208.	019) 082 021) 095 12095 *	[4] EPJC 82 (2022) 374 [5] arXiv:2205.02817 *	[6] arXiv:2 * Prelimina	202.12134 * ary	EFT formalism is employed at different levels of experimental analyses	

CMS-SUSY-Summary-Plots

Lepton flavor universality using WW and W+jets events

PRD 105 (2022) 072008

32

Cross section ratios

- with five main categories IP W/Z/H/t/QCD
- PF candidates and secondary vertex information as inputs.
- It is a one-dimensional CNN based on the ResNet architecture

JINST 15 (2020) P06005

DeepAK8 is a multi-classification algorithm for the identification of hadronically decaying particles,

