IceCube and the future of Astroparticle Physics from the South Pole

Manisha Lohan (on behalf of the IceCube Collaboration) Tata Institute of Fundamental Research, India

XXV DAE-BRNS High Energy Physics Symposium December $12^{th} - 16^{th}$, 2022

IceCube detector

History of neutrino astronomy in Antartica

In-ice signatures

Muon tracks $\rightarrow v_{\mu}$ (CC)

cascades → all flavors

The IceCube astrophysical flux (7.5 years of data)

- IceCube flux is mainly dominated by astrophysical neutrinos.
- The brightest point source is well separated from galactic plane.

Multi-messenger alerts: TXS 0506+056

Science 361, eaat1378 (2018)

Recent NGC 1068

Neutrino oscillations

Phys. Rev. D 91, 072004 (2015)

The transition probability between the two flavor eigen-states is given by:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 \left(2\theta\right) \, \sin^2 \left(\Delta m^2 \, \frac{L}{4 \, E_{\nu}}\right)$$

 90% CL contours for the oscillation parameters, obtained from IceCube data is compatible with results from other experiments.

Manisha Lohan

Dark matter

Eur. Phys. J. C (2017) 77:146

- For spin dependent scattering, IceCube has better limits as compared to direct detection experiment.
- Direct detection experiments have more stringent constraints for Spin Independent scattering.

Galactic neutrino flux @ 7 years of IceCube data

Astrophys.J. 849 (2017) 67

- Distribution of neutrino events fitted to ps template while using Fermi decay model.
- Fluxes are integrated over full sky, with upper limits at 90% confidence level.
- > Gray band : predictions of KRA models.
- > Red \rightarrow IceCube 7 year data upper limit.
- ≻ Green band → only using northern sky muon data

IceCube Gen-2

Physics motivation:

- Resolve the high-energy neutrino sky from TeV to EeV energies
- Investigate cosmic particle acceleration through multi-messenger observations
- > Reveal the sources and propagation of the highest energy particles in the universe
- Probe fundamental physics with high-energy neutrinos

Gen-2 surface array

Total 120 hybrid stations Each station consists of 8 scintillators and 3 radio antennas.

Manisha Lohan

December 13, 2022

Gen-2 radio array

Total 200 hybrid radio stations, made up of shallow and deeper antennas.

Askaryan effect: The electromagnetic component of the shower evolves over time as additional electrons are up-scattered from the ice, leading to a relativistically moving negative charge excess in the shower front and a charge separation along the shower axis. A dipole is formed that changes as the shower develops and thereby emits radiation.

Composition sensitivity studies for IceCube Gen-2

Possibilities of Indian contribution @ hardware aspects

Cast for scintillator sheet fabrication, with silicon oil bath

Cal Sole and

A 1 41 14

Uniform distribution of grains in trays

> GRAPES-3 Plastic Scintillator

Summary

- The astrophysical neutrino flux measurements are done using the IceCube data, followed by discovery of two extra-galactic neutrino sources: TXS 0506+056 and NGC 1068, which contribute ~ 1% of extragalactic neutrino flux.
- IceCube data measurements on neutrino oscillations is compatible with results from other experiments.
- IceCube has the world-best limits for the spin dependent scattering crosssections for dark matter.
- IceCube upper limits for galactic neutrino flux is at 90% confidence level.
- Deployment of radio array during IceCube Gen-2 will increase the sky coverage.
- Simulation studies for IceCube Gen-2 confirms that it will enhance the composition sensitivity studies.
- Indian institutes are fully capable to make hardware contribution towards IceCube Gen-2.

Astrophys.J. 849 (2017) 67

Fluxes are integrated over full sky, with upper limits at 90% confidence level. Gray band : predictions of KRA models. Red \rightarrow IceCube 7 year data upper limit. Green band \rightarrow only using northern sky muon data Yellow band \rightarrow power law unfolding of

the IceCube data.

Black points \rightarrow differential unfolding of the IceCube data.

$$TS = -2\ln[\mathcal{L}(n_s = 0)/\mathcal{L}(\hat{n}_s)]$$

The IceCube astrophysical flux

54 events seen on an expected background of 12.6 5.1 and

No statistically significant clustering Science

Multi-messenger source: TXS 0506+056

Two analyses provide evidence that TXS 0506+056 is the first of the long-sought sources of astrophysical neutrinos.

When both results are considered together, this provides evidence that blazars, especially TXS 0506+056, is a site of high-energy cosmic ray acceleration, and blazars are a potential source of a sizable fraction of the lceCube diffuse neutrino flux.

Many question still remain:

- Why TXS 0506+056?
 - A distant (4 Bly) and very luminous blazar
 Why not closer blazars?
- What other objects are out there like TXS 0506+056?
 - Ongoing investigations with partners to resolve
 - Continued alerts

Neutrino Signatures in IceCube

5

The IceCube Gen2 facility at the South Pole

Wide-band observatory: Optimizing scales for leading sensitivity from 10⁹ to 10²⁰ eV

Gen2 white paper: 2008.04323

Developments towards IceCube-Gen2

Building on experience and new technology

IceCube Installation

Operating sensors in the ice since 2006, with no evidence for aging

New surface technology

Scintillator / radio station deployed at South Pole (2019) (PoS ID 314)

IceCube Upgrade / Gen2 Phase 1

Deployment of next generation sensors (see next slide)

Radio-Tests in Greenland

ICECUBE

GEN2

Radio technology deployed in Greenland (2021, see S. Wissel et al., <u>PoS ID 001</u>)

Neutrino Production

The Future: Lower Energies

24

- Seven new in-filled strings
- Better efficiency and reconstruction at low energies
- Delayed due to Covid-19: deployment in 2025/26 season.

Sensor	mDOM	D-Egg
Number of PMTs	24	2
PMT diameter [inch]	3.15	8
PMT QE type	Normal QE	High QE
Module diameter [cm]	36	30
Module height [cm]	41.1	53.4
Effective photon detection area ($\lambda = 400$ nm) [cm ²]	108	94