THE FIRST DECADE OF REAL TIME MULTIMESSENGER ASTRONOMY

... AND THE WAY FORWARD

Neutrino

14th December 2022

Mohamed Rameez

XXV DAE-BRNS HIGH ENERGY PHYSICS SYMPOSIUM 2022, MOHALI

Multi-messenger Astronomy

Photons

Cosmic Rays

Electrons, protons, heavy nuclei: 10⁸ - 10²⁰ eV – Origins unknown. Observed first by Victor Hess in 1912

Gravitational Waves Predicted by General relativity – Observed first in 2015 BH-BH merger ~410 Mpc away. Now many events, including NS NS merger with EM counterpart

Neutrinos

Proposed by Pauli in 1931, detected by Reines and Cowan in 1959, neutral, weakly interacting. The Sun, SN1987 A – 10 MeV, TXS 0506+056, NGC 1068 Diffuse astrophysical flux >50 TeV

The messenger horizon

y-rays do not travel too far 1 TeV : Closest AGNs CRs cannot point back Deflection : few degrees at ~50 EeV Horizon ~100 MPc – interactions with CMB The neutrino - ideal messenger for the non thermal universe Neutral, undeflected - can point back Interacts only weakly • - can travel Gpc distances

We hope to seeThe sites of CR acceleration

First decade of multimessenger astronomy

The IceCube Neutrino Observatory

WHY NEUTRINO ASTRONOMY?

M. Rameez - TIFR

14/12/2022 6

- (~0.6° at 10 TeV)
- Vertex can be outside the detector: Increased effective volume!

In both cases, ν and $\bar{\nu}$ are indistinguishable

V_e, V_τ and all-flavor neutral current
 Fully active calorimeter: High energy resolution
 Angular reconstruction above ~50 TeV

The IceCube astrophysical flux (7.5 years of data)

Phys.Rev.D 104 (2021) 022002

ind statis

60 Events above 60 TeV

No statistically significant clustering Corrected for trials

M. RAMEEZ - TIFR

Astrophysical neutrino flavour ratio Muon damped Standard π production Neutron decay

IceCube, ApJ 809:98 (2015) IceCube, PRL 114, 171102 (2015)

Confirmation of Glashow resonance at 6.3 PeV

Measurement of neutrino-nucleon cross section using Earth absorption

Multi-messenger alerts: TXS 0506+056

On September 22, 2017, IceCube issued a neutrino alert:

- A muon track event created by a ~290 TeV neutrino (IceCube-170922A)
- Found to be spatially coincident with a known blazar (TXS 0506+056) that was in a flaring state
- Blazar was also detected by the MAGIC air-Cherenkov telescope in the days after the alert, with γ-rays up to 400 GeV.
- This launched a very active multi-messenger follow-up campaign that included observations from radio to γ-rays.

M. RAMEEZ - TIFR

5.72

5.64

77.41

77.37

Multi-messenger alerts: TXS 0506+056

At detection time of IceCube-170922A, very little was known about blazar TXS 0506+056.

As part of the large community follow-up effort, the redshift has been measured $z= 0.3365 \pm 0.0010$ (Pianno, et al. ApJ **854** (2018) 2)

But how often does this happen by chance?

- 2257 cataloged extragalactic Fermi-LAT sources
- Light curves above 1 GeV in monthly bins
- Likelihood ratio test comparing random coincidence (null hypothesis) to correlation between gamma-ray flux and neutrino flux for several models
 - Energy flux, Flux variability, VHE detection/detectability
 - 4.1σ preference for correlated emission
- Trials corrected:
 - 9 previous alerts + 41 additional events that *would* have generated alerts, had they been operational
 - 3.0 or preference for correlated emission

Recently published in Science:

IceCube Coll. et al., Science 361 (2018)

M. RAMEEZ - TIFR

Multi-messenger source: TXS 0506+056

Two analyses provide evidence that TXS 0506+056 is the first of the long-sought sources of astrophysical neutrinos.

When both results are considered together, this provides evidence that blazars, especially TXS 0506+056, is a site of high-energy cosmic ray acceleration, and blazars are a potential source of a sizable fraction of the IceCube diffuse neutrino flux.

Many question still remain:

- Why TXS 0506+056?
 - A distant (4 Bly) and very luminous blazar
 Why not closer blazars? (now solved)
- What other objects are out there like TXS 0506+056?
 - Ongoing investigations with partners to resolve
 - Continued alerts

NGC 1068

M. RAMEEZ - TIFR

Multimessenger phenomenology?

This field is ready to be disrupted

Search for neutrinos in coincidence with gravitational waves

M. RAMEEZ - TIFR

ν from GWs? (contd)

ANTARES, IceCube, LIGO/VIRGO

M. RAMEEZ - TIFR

Correlations with UHECR arrival directions?

No statistically significant correlation.

Correlations with GRBs?

- No association with five years of muon neutrino track events
- Conclusion: <1% of astrophysical neutrino flux is produced by GRBs
- Non-detection rules out GRBs as the dominant source of UHE cosmic rays

A diffuse Galactic Component?

Realistic models are currently below the IC Sensitivity

Astrophys.J.Lett. 868 (2018) 2, L20

Diffuse spatial template from Fermi π^0 map, combined with IC effective area and angular resolution

The Future

The IceCube Gen2 Facility

Transient factories

GRBs SNe Neutrinos Gravitational waves FRBs Optical transients

We are about to be overwhelmed by data. Great opportunity for citizen science and outreach

CTA

Credible DM Detection *will need* multiple messengers

What can we expect?

Surprising correlations, falsification of assumptions – keep an open mind

Short term

Long term

Galactic diffuse neutrinos? More confidence in our understanding of CR acceleration and diffusion models

Long shot

Anchordoqui et. al. Phys. Rev. D 72 (2005) 065019

Quantum gravity – neutrino flavour ratio from a multimessenger source

14/12/2022

Conclusions

- Neutrinos and Gravitational waves are two astronomical messengers that have come of age in the last decade.
- Neutrinos Diffuse flux, two high energy sources with EM counterparts
- GWs 23 above 5 sigma
- Multimessenger phenomenology is nascent and needs fresh ideas
- Upcoming transient factories great opportunity for citizen science and outreach

A revolution may be around the corner

Backup

Diffuse flux also discovered in other channels

The IceCube Point Source samples of events

~600000 tracks, from IC40, 59, 79 and 86 (7 years of IceCube) Northern sky: μ from $\nu_{\mu} + \bar{\nu}_{\mu}$ CC interactions Southern sky: Atmospheric μ

All sky point source searches - 10 years

Northern sky p value : $10^{-6.45}$

Southern sky p value : $10^{-5.37}$

All sky point source searches

Northern sky p value : $10^{-6.45}$ Southern sky p value : $10^{-5.37}$

Post trials, p values of 0.099 and 0.75 respectively.

No statistically significant excess!

Compatible with the background only hypothesis.

NGC 1068 as a candidate source (from a Catalogue search)

Only 2.9 sigma, accounting for trials.

Cosmogenic (GZK) Neutrinos?

$$\gamma_{CMB} + p \to \Delta^+ \to p + \pi^0 \\ \to n + \pi^+$$

No detection in 6 years of data

Favours heavier composition for UHECRs

Supernova Remnants (SNRs) and other Galactic Sources?

Astrophys.J. 835 (2017) no.2, 151

A diffuse Galactic Component?

Correlations with UHECR arrival directions?

No statistically significant excess.

Correlations with GRBs?

- No association with five years of muon neutrino track events
- Conclusion: <1% of astrophysical neutrino flux is produced by GRBs
- Non-detection rules out GRBs as the dominant source of UHE cosmic rays

Astrophysical neutrino flavor ratio

- "Muon damped": muons lose energy to synchrotron radiation within mean source
- With future data, the *neutrino* flavor ratio can constrain *magnetic* field amplitude at source of astrophysical neutrinos / cosmic rays

14/12/2022