Recent Highlights of Higgs Boson Measurements at the LHC

A mini review

Kajari Mazumdar TIFR, Mumbai.

DAE-BRNS Symposium, IISER Mohali, 13 December, 2022

Abeyance

- excellent performance of the accelerator
- enormous progress in computing capabilities
- precision theoretical description of the production and decay processes of the Higgs boson as well as the relevant backgrounds.

⇒ Higgs physics has entered precision era

 \Rightarrow increases the sensitivity to search for beyond standard model (SM) physics

• Within uncertainties, no deviations, so far, from the predictions of the SM.

Nature 607 (2022) 7917

- A theoretical perspective
- A detailed map of H: ATLAS
- A portrait of H: CMS

This talk: glimpse on a limited selection from a plethora of very interesting analyses carried out in recent years.

Also look at plenary session talk by A.Nayak

Data

pp collision data collected by each of ATLAS and CMS experiments:

Run1 at √s = 7, 8 TeV (2010 - 2012) : ~20 fb⁻¹

```
Run2 at \sqrt{s} = 13 TeV (2015 - 2018): ~140 fb<sup>-1</sup>
```

Run3 at \sqrt{s} = 13.6 TeV (2022 onwards): collected ~ 40 fb⁻¹

Total no. of Higgs bosons produced at each interaction point ~10⁷

Evolution in interpretation of data (study variables of complementary sensitivities)

Parameter value

Anomalous couplings

- Current precision allows for anomalous couplings.
- Describe possible deviations from SM with scale factors, κ_i , defined s.t. the cross section or the partial decay width scales with κ_i^2 when compared to the SM prediction.
- Assume kinematics to be unaltered.
- κ- framework can accommodate any non-SM invisible or undetected component.

a

Couplings to bosons and fermions

- Footprint of SM: behaviour of couplings with the masses of the particles.
- So far, Higgs boson is SM like.
- However there is large room for BSM effects for the 2nd and first generation fermions.
- There are many ways to constrain BSM effects in Higgs physics using effective field theory (EFT), including non-Higgs measurements.

Coupling to bottom quark

- Br (H→bb) = 60%
- Challenge: huge QCD multijet background
- VH production process: best sensitivity

ATLAS: $\mu = 1.02^{+0.18}$ Obsd. (exp.) significance: 6.7 s.d.

VBF H \rightarrow bb : recent CMS analysis HIG-22-009: *Parallel session talk by Soumya Mukherjee*

Coupling to charm quark

- Br (H→cc) = 3%
- Large QCD background, poor mass resolution
- Novel jet reconstruction and identification tools, and analysis techniques
- CMS uses associated production (VH) with both resolved and merged c-jet pair topologies

CMS: Observed (expected) : σ(VH) ℬ(H→cc) < 0.94 (0.50^{+0.22}_0 15) pb

Upper limit (UL) on signal strength at 95% CL: $\mu < 14 \ (7.6^{+3.4}_{-2.3})$

⇒ Strongest limits on VH(H \rightarrow cc) process to date!

CMS: 1.1 < $|\kappa_c| < 5.5$ obs. $|\kappa_c| < 3.4 \text{ exp.}$) assuming all other $\kappa_i = 1 \rightarrow \text{most stringent}$ Eur.Phys.JC 82 (2022) 717 arXiv: 2205.05550

First observation of VZ with > 7 s.d.

Crucial role of precise theoretical predictions for various processes.

W/Z

Couplings to leptons

- Br (H→µµ) = 0.02%
- Excellent mass resolution \rightarrow helps to tackle the background of $Z \rightarrow \mu\mu$

- Br (H→ee) = 3.5*10⁻⁴ %
- Important background of Z→ee can be tackled using VBF topology.

Higgs boson mass

<u>Run 1</u>

ATLAS +CMS $[4I+\gamma\gamma] m_{H} = 125.09 \pm 0.21 \pm 0.11 \text{ GeV}$

Run 2 : 30 times more Higgs bosons

N<u>ow</u>

Run1 + Run2 Combined m_{H} = 125.38 ± 0.14 GeV Δm_{H} measured with ~ 0.1% precision in CMS. → best so far

11

Decay Width of the Higgs boson

- $\tau_{\rm H} \approx 1.6 \times 10^{-22}$ sec \Rightarrow the natural width, $\Gamma_{\rm H} = 4.14 \pm 0.02$ MeV in SM. experimental resolution: ~ 1 GeV
- $\Gamma_{\rm H}$ can be estimated by comparing on-shell and off-shell productions of H assuming SM couplings and no new signal, other than possible enhancement of off-shell H contribution .

Invisible decay of the Higgs boson

ATLAS-CONF-2020-052 CMS_PAS-HIG-21-007

BR(H \rightarrow invisible) = 0.1% in SM (H \rightarrow ZZ \rightarrow 4 ν)

• Too small for detection, poor E_T^{miss} resolution, background from $Z \rightarrow \nu \nu$

• But if H decays to WIMPs (DM candidates), BR(H→invisible) could be enhanced.

VBF + ttH, Run2+Run1 combination:

Upper limits at 95% CL

ATLAS: BR(H→inv) < 11%

CMS: BR(H→inv) < 15%

Limit on WIMP-nucleon scattering cross section in Higgs portal model \rightarrow complementary to direct searches for DM.

Simplified Template Cross section: STXS

Cross sections measured, for each production mode, in bins of truth quantities, like, p_T^H , N_{iets} , m_{ii} and p_T^V (in VH mode).

- Granular measurement of the cross section for each production mode \rightarrow presently most sensitive to ggH.
- Increased sensitivity to BSM effects.
- Provide a common set of definitions for the combination of the measurements in different channels.

Allow kinematics-dependent interpretations.

Eur.Phys.J.C81(2021) 488

Measuring the fiducial cross section

- Fiducial cross section: align the phase space of interest with detector configuration ⇒ not corrected for acceptance and kinematic selections on reconstruction level objects and analysis acceptance.
- Fiducial phase space defined at the generator level is not exactly the same as that in the reconstruction level.
 - \rightarrow detector effects unfolded for the fiducial phase space defined at the generator level.
- Outside of acceptance (OOA) component part subtracted from signal before detector unfolding.
- Special phase space defined as a subset eg. require additional 2 jets in the event. → target VBF process requiring special topology of the 2 jets.

Differential cross section:

- \rightarrow more information than inclusive cross sections
- \rightarrow more powerful to validate or falsify models

Fiducial cross section in dedicated regions of phase space

Shape of $p_T^{\gamma\gamma}$ spectrum: i) low p_T region sensitive to light quark Yukawa couplings.

ii) high p_T region sensitive to effective coupling to gluon.

No sensitivity of p_{τ} to HVV couplings in SM.

CMS (H
$$\rightarrow \gamma \gamma$$
) $\sigma_{\text{fid}} = 73.4^{+5.4}_{-5.3} (\text{stat})^{+2.4}_{-2.2} (\text{syst}) \text{ fb} = 73.4^{+6.1}_{-5.9} \text{ fb}.$ 75.4 ± 4.1 fb (SM)

CMS inclusive and differential distribution for H \rightarrow WW: talk by <u>G. Das</u>

arXiv: <u>2207.08615</u> <u>2208.12279</u>

Self-coupling of the Higgs boson

Before electroweak symmetry breaking, Higgs potential

$$V(\phi) = \mu^2 |\phi|^2 + \lambda |\phi|^4$$

After EWSB:

 $V_{\rm SM} = \frac{m_h}{2}h^2 + \frac{\lambda v h^3}{4} + \frac{\lambda}{4}h^4$

- Determination of Higgs self-coupling λ: THE important mandate to understand the nature or shape of the Higgs potential near the minimum → related to the evolution of the universe at EW scale.
- Inclusive Higgs pair production at the LHC \rightarrow direct access to HHH and VVHH vertices $\rightarrow \kappa_{\lambda}, \kappa_{2V}$

 $\sigma(pp \rightarrow HH+X) \sim 31 \text{ fb} \rightarrow 10^{-3*} \sigma(pp \rightarrow H+X)$

• Target both ggF and VBF processes:

Observed (expected) limits on HH signal strength:

ATLAS: μ_{HH} < 2.4 (2.9)

CMS: µ_{HH} < 3.4 (2.5)

ATLAS-CONF-2022-050 Nature 607 (2022) 60-68

Limits on trilinear self-coupling and quartic couplings

● Interference among relevant diagrams→cross section dependency on the coupling modifiers

One-loop single Higgs production also involves κ_{λ} at higher orders, included in the ATLAS combination, of HH and H measurements.

 \Rightarrow better constraints on κ_{λ} and other couplings.

CP properties of the Higgs boson & effective field theory

- Higgs boson in SM: J CP = 0⁺⁺
- CP violation in the Higgs sector could complement other known sources \rightarrow indication of BSM physics. •
- Pure CP-odd Higgs excluded at the LHC at 3 s.d.
- Search for CPV in the shapes of various optimal observables (rate measurement is not sensitive to CPV)
- Fermionic couplings (Hff) modelled as : $\mathscr{L}_{ffH} = \kappa'_f y_f \phi \bar{\psi}_f (\cos \alpha + i\gamma_5 \sin \alpha) \psi_f$ • \rightarrow tree-level effect prominent in 3rd generation \rightarrow ttH production, H \rightarrow $\tau\tau$ decay processes.
- Bosonic couplings (HVV): higher order operators suppressed by BSM scale Λ : $\mathscr{L}_{VVH} = \mathscr{L}_{SM} + \frac{c_i}{\Lambda^2} \phi \tilde{V}_{\mu\nu} V^{\mu\nu} + \dots$ \rightarrow pure CPV effects in interference term
- Effective Field Theory allows us to look for "low energy" deviations of "high energy" BSM physics.

$$A(HVV) \sim \begin{bmatrix} a_{1}^{VV} + \frac{\kappa_{1}^{VV}q_{1}^{2} + \kappa_{2}^{VV}q_{2}^{2}}{(\Lambda_{1}^{VV})^{2}} \end{bmatrix} m_{V1}^{2}\epsilon_{V1}^{*}\epsilon_{V2}^{*} + \frac{a_{2}^{VV}}{a_{2}^{2}}f_{\mu\nu}^{*(1)}f^{*(2)\mu\nu} + \frac{a_{3}^{VV}}{a_{3}^{2}}f_{\mu\nu}^{*(1)}\tilde{f}^{*(2)\mu\nu} + \frac{a_{3}^{VV}}{(\mathsf{CP})}f_{\mu\nu}^{*(1)}\tilde{f}^{*(2)\mu\nu} + \frac{a_{3}^{VV}}{\mathsf{CP}}f_{\mu\nu}^{*(1)}\tilde{f}^{*(2)\mu\nu} + \frac{a_$$

CP Violation in HVV coupling using H ${\rightarrow} \boldsymbol{\tau} \boldsymbol{\tau}$

- Use jet kinematics in ggF and VBF production processes combined with decay kinematics.
- CPV effect on effective cross sections measured in terms of ratios like

$$f_{ai} = \frac{|a_i|^2 \sigma_i}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + |\kappa_1|^2 \sigma_{\Lambda 1} + |\kappa_1^{Z\gamma}|^2 \sigma_{\Lambda 1}^{Z\gamma}} \operatorname{sgn}\left(\frac{a_i}{a_1}\right)$$

Matrix element calculations (MELA) \rightarrow discriminating variables $\mathcal{P}_{\text{end}}(\vec{\Omega})$

$$\mathcal{D}_{\rm BSM} = \frac{\mathcal{P}_{\rm SM}(\Omega)}{\mathcal{P}_{\rm SM}(\vec{\Omega}) + \mathcal{P}_{\rm BSM}(\vec{\Omega})}$$

$$\mathbf{\Omega}^{\text{assoc}} = \{\theta_1^{\text{VBF}}, \theta_2^{\text{VBF}}, \theta^{\text{VBF}}, \Phi^{\text{VBF}}, \Phi_1^{\text{VBF}}, q_1^{2, \text{VBF}}, q_2^{2, \text{VBF}}\}$$

Combined results of $H \rightarrow \tau \tau$, $H \rightarrow ZZ^* \rightarrow 4I$, $H \rightarrow \gamma \gamma$ to achieve much higher sensitivity.

For a general discussion on EFT analysis of top and Higgs measurements: talk by <u>S.Chatterjee</u>

arXiv: <u>2205.05120</u>

Conclusion

- Ten years back the discovery of Higgs boson marked a milestone in particle physics.
- Analyses of Run2 data have led to a significant improvement on our understanding of the resonance.

I could present a small sample to underline the expanse of the efforts towards deciphering the Higgs sector.

- All current results are compatible with the SM expectations.
- Run3 has just started: expect to collect ~300 fb⁻¹ at 13.6 TeV with Phase-1 upgraded detectors.
- Interesting results continue to pour in \rightarrow Stay tuned!
- High-Luminosity LHC, with Phase-2 upgraded detectors and further improved theoretical calculations, will make Higgs measurements even more interesting in the era of precision physics.
- The enthusiasm to search for beyond standard model physics should not overshadow the Higgs physics programme.

Thank you!

Backup

10 years back: discovery of the Higgs boson

- Experimental confirmation by ATLAS and CMS collaborations at the LHC about the existence of the unique scalar boson described in the Standard Model. *India: partner in the CMS collaboration.*
- *Triumph of human intellect:* the simplest and elegant idea postulated in 1960s

 \rightarrow Higgs field, with a non-zero vacuum expectation value, permeates the whole universe and is responsible for the generation of masses of the Standard Model particles in a consistent way.

 \rightarrow Higgs boson plays crucial role in vector boson scattering, provides unitarity.

- 2013 Nobel Prize in Physics to Francois Englert and Peter Higgs.
- Value of the Higgs boson mass chosen by Nature
 - \rightarrow quick discovery at the LHC.
 - \rightarrow numerous experimental measurements with multiple decay modes.

This talk is only a glimpse of the recent state-of-affairs

Role of precision

Gedanken experiment

We cannot afford to miss a discovery!