13011

Danish research at ISOLDE

Lars Hemmingsen, Ihe@chem.ku.dk, Dept. of Chemistry, University of Copenhagen

on behalf on Danish ISOLDE users

rECFA meeting, Copenhagen, May 12-13 2022

Overview

- The ISOLDE facility
- Nuclear physics
 - Nuclear astrophysics
 - ➤ 8He and 9Li decays
- Chemistry and biophysics
 - > Biomolecular structure and function
 - Quadrupole moments from molecular experiments
- Other applications of radionuclides
 - ➤ ISOLDE helping ESS
 - Medical radionuclides (MEDICIS/PRISMAP)

Mikael Jensen
Technical University
of Denmark

The ISOLDE facility

The ISOLDE facility

Nuclear chart for ISOLDE

Nuclear astrophysics

¹⁶N decay and ¹²C(α , γ)¹⁶O

KVI: Refsgaard et al. PLB 752, 296

CERN: Kirsebom et al., PRL 121, 142701

Nuclear physics

Low-energy neutrinos: 8He, 9Li background

- Beta-delayed n emission mimics neutrino-signal
- Need complete experimental characterization (for GEANT4)

Running now at

Post accelerated beams

From nuclear physics to molecular properties

Intracellular control of metal ion concentration by metallosensor proteins – CueR senses Cu(I):

Uni of Copenhagen
Uni of Szeged
Biological Research
Centre of the
Hungarian Academy of
Sciences

But does not respond to divalent metal ions, potentially because a secondary metal site provides auxiliary ligands – a 199m Hg Perturbed angular correlation of y-rays (PAC) study.

From molecular properties to nuclear physics

The first gas phase PAC experiments combined with state of the art (CCSD(T)) electronic structure calculations (project lead by H. Haas, CERN)

CdHal₂ is: CdCl₂ CdBr₂ CdI_2

Uni of Copenhagen Uni of Bonn Uni of Duisburg-Essen

Uni of Aveiro Uni of Lisbon

ISOLDE/CERN

provided most accurate determination of excited state nuclear quadrupole moments of ¹⁹⁹Hg and ¹¹¹Cd:

 $Q(^{199}Hg, 5/2^{-}) = +0.674(17) \text{ b} \text{ and } Q(^{111}Cd, 5/2^{+}) = +0.664(7) \text{ b}.$

ISOLDE helping ESS

Irradiation of W blocks at ISOLDE – ESS safety check of their target: measure amount of emission of ¹²⁵I, noble gases and ³H (prof. Mikael Jensen, Hevesy Lab, DTU)

Medical radionuclides

ISOLDE/MEDICIS is an important part of the new European isotope production program: Prismap (www.prismap.eu)

Which also includes the Hevesy Lab, DTU, Denmark (prof. Mikael Jensen)

Collaborations

- Spain, CSIC, Madrid Maria Jose G. Borge, Olof Tengblad, ...
- Sweden, Chalmers, Göteborg Björn Jonson, Thomas Nilsson, ...
- Spain, Universidad Complutense, Madrid Luis M. Fraile
- Sweden, Lund Universitet, Lund Joakim Cederkäll
- USA, University of Tennessee, Knoxville Miguel Madurga
- Romania, IFIN-HH, Bucharest Razvan Lica, Christof Sotty
- Poland, University of Warsaw Marek Pfützner,...
- USA, University of Michigan Vincent L. Pecoraro
- Hungary, University of Szeged Attila Jancso, Bela Gyurcsik
- Switzerland, University of Zurich, Roland K. Sigel, Eva Freisinger,
 Silke Johannsen
- Canada, TRIUMF / UBC Andrew McFarlane, Iain McKenzie, Monika Stachura
- USA, University of Northern Kentucky Matthew Zacate
- France, ILL Ulli Köster

199192

• ...

Science – summary and future

- "Small science" addressing fundamental questions from nuclear physics to biochemistry => extensive international collaboration
- Run more / longer experiments per year
 - → Fulfil high demand for beam time
- Better quality beams (intensity/purity)
 - → e.g. around ¹³²Sn: region of interest for astrophysics r-process path (link to origin of elements, neutron-star mergers, gravitational waves)
- Faster release
 - → Shorter lived (thus more exotic) isotopes
 - → Those are typically of highest interest (astrophysics, nuclear modelling, ...)
- Expand the user group, and re-initiate eMS collaboration including Danish Research

Thank you for your attention!

ISOLDE 1967First proton beam

Karl Johnston

Joao G.M. Correia

Juliana Schell

199132

ISOLDE now