Antihydrogen Laser PHysics Apparatus

University of Calgary,

Aarhus University, Un Denmark

University of British Columbia, Canada

Univ

24 faculty
13 postdocs
10 PhD students
5 - 20 undergraduates

rdue University, st Lafayette, USA

Federal University of Rio de Janeiro, Brazil

Stockholm University, Sweden

MANCHESTE 1824

University of Manchester.

SFU

Simon Fraser University, Canada`

TRIUMF, Canada

University of Wales Swansea, UK

Cockcroft Institute, UK

York University, Canada

Motivations in Brief

- •Tests of fundamental symmetries by applying *precise and* accurate atomic physics techniques to anti-atoms:
 - •CPT violation?
 - •Lorentz invariance violation?

 Physics beyond the Standard Model?

The initial physics goal of ALPHA was to TRAP antihydrogen atoms, so that they can be studied in detail.

- •(Anti)-Gravity two previously approved experiments at CERN; AEGIS and Gbar proof of principle by ALPHA; now ALPHA-g is ready to go
- •... of course this is all *motivated* by the apparent baryon asymmetry in the universe

The Question

How could you possibly work in Denmark and *not* want to know the answer to this?

The Holy Grail - Antihydrogen Spectroscopy

If antihydrogen can be trapped, *any* type of spectroscopic measurement can be contemplated

Antihydrogen

Hydrogen

- Doppler effect cancels
- High precision in matter sector
- test of CPT theorem

The CERN AD

Trapping Antihydrogen

Trapping Neutral Anti-atoms?

Well depth $\sim 0.7 \text{ K/T}$

Need to produce the atoms so they are born trapped

Broken rotational symmetry: Can we superpose this on a Penning trap?

ALPHA Silicon Vertex Detector

3-layer, double-sided modules Detect antiproton anihilation (not e⁺) Fabricated by U. Liverpool

Event Topology

Typical antiproton annihilation: Typical cosmic ray charged pions

... not much going on here

Trapped Antihydrogen: 2010

LETTER

doi:10.1038/nature09610

Trapped antihydrogen

G. B. Andresen¹, M. D. Ashkezari², M. Baquero-Ruiz³, W. Bertsche⁴, P. D. Bowe¹, E. Butler⁴, C. L. Cesar⁵, S. Chapman³, M. Charlton⁴, A. Deller⁴, S. Eriksson⁴, J. Fajans^{3,6}, T. Friesen⁷, M. C. Fujiwara^{8,7}, D. R. Gill⁸, A. Gutierrez⁹, J. S. Hangst¹, W. N. Hardy⁹, M. E. Hayden², A. J. Humphries⁴, R. Hydomako⁷, M. J. Jenkins⁴, S. Jonsell¹⁰, L. V. Jørgensen⁴, L. Kurchaninov⁸, N. Madsen⁴, S. Menary¹¹, P. Nolan¹², K. Olchanski⁸, A. Olin⁸, A. Povilus³, P. Pusa¹², F. Robicheaux¹³, E. Sarid¹⁴, S. Seif el Nasr⁹, D. M. Silveira¹⁵, C. So³, J. W. Storey⁸†, R. I. Thompson⁷, D. P. van der Werf⁴, J. S. Wurtele^{3,6} & Y. Yamazaki^{15,16}

Published online in *Nature*, 17 November 2010

Physics Breakthrough of the Year - 2010 Physics World (UK)

One of the top ten physics stories of 2010 - American Institute of Physics

Most clicked-on story on Nature website for all of 2010

Breit-Rabi Diagram (assumed)

LETTER

Resonant quantum transitions in trapped antihydrogen atoms

C. Amole¹, M. D. Ashkezari², M. Baquero-Ruiz³, W. Bertsche^{4,5,6}, P. D. Bowe⁷, E. Butler⁸, A. Capra¹, C. L. Cesar⁹, M. Charlton⁴, A. Deller⁴, P. H. Donnan¹⁰, S. Eriksson⁴, J. Fajans^{3,11}, T. Friesen¹², M. C. Fujiwara^{12,13}, D. R. Gill¹³, A. Gutierrez¹⁴, J. S. Hangst⁷, W. N. Hardy^{14,15}, M. E. Hayden², A. J. Humphries⁴, C. A. Isaac⁴, S. Jonsell¹⁶, L. Kurchaninov¹³, A. Little³, N. Madsen⁴, J. T. K. McKenna¹⁷, S. Menary¹, S. C. Napoli⁴, P. Nolan¹⁷, K. Olchanski¹³, A. Olin^{13,18}, P. Pusa¹⁷, C. Ø. Rasmussen⁷, F. Robicheaux¹⁰, E. Sarid¹⁹, C. R. Shields⁴, D. M. Silveira²⁰†, S. Stracka¹³, C. So³, R. I. Thompson¹², D. P. van der Werf⁴ & J. S. Wurtele^{3,11}

- •Published in *nature* online 7 March, 2012
- •First measurement on an antimatter atom precision: few parts in 10^3
- •Shows that it is possible to do physics with few atoms
- •...but we have a lot more now

ALPHA-2 (2012)

ALPHA-2: 2012

First ALPHA-2 result published in *nature 2016*

LETTER

OPEN

doi:10.1038/nature16491

An improved limit on the charge of antihydrogen from stochastic acceleration

M. Ahmadi¹, M. Baquero-Ruiz^{2,3}, W. Bertsche^{4,5}, E. Butler^{6,7}, A. Capra⁸, C. Carruth², C. L. Cesar⁹, M. Charlton¹⁰, A. E. Charman², S. Eriksson, L. T. Evans², N. Evetts¹¹, J. Fajans², T. Friesen¹², M. C. Fujiwara¹³, D. R. Gill¹³, A. Gutierrez¹¹, J. S. Hangst¹², W. N. Hardy¹¹, M. E. Hayden¹⁴, C. A. Isaac¹⁰, A. Ishida⁷, S. A. Jones¹⁰, S. Jonsell¹⁵, L. Kurchaninov¹³, N. Madsen¹⁰, D. Maxwell¹⁰, J. T. K. McKenna¹³, S. Menary⁸, J. M. Michan¹³, T. Momose¹⁶, J. J. Munich¹⁴, P. Nolan¹, K. Olchanski¹³, A. Olin^{13,17}, A. Povilus², P. Pusa¹, C. Ø. Rasmussen¹², F. Robicheaux¹⁸, R. L. Sacramento⁹, M. Sameed¹⁰, E. Sarid¹⁹, D. M. Silveira⁹, C. So², T. D. Tharp¹², R. I. Thompson²⁰, D. P. van der Werf¹⁰, J. S. Wurtele^{2,21} & A. I. Zhmoginov²

charge is consistent with zero to 0.71 ppb atoms of normal matter are neutral to 1 in 10^{21}

Configuration for Laser Physics – 1S-2S transition

LETTER

OPEN

doi:10.1038/nature21040

Observation of the 1S-2S transition in trapped antihydrogen

M. Ahmadi¹, B. X. R. Alves², C. J. Baker³, W. Bertsche^{4,5}, E. Butler⁶, A. Capra⁷, C. Carruth⁸, C. L. Cesar⁹, M. Charlton³, S. Cohen¹⁰, R. Collister⁷, S. Eriksson³, A. Evans¹¹, N. Evetts¹², J. Fajans⁸, T. Friesen², M. C. Fujiwara⁷, D. R. Gill⁷, A. Gutierrez¹³, J. S. Hangst², W. N. Hardy¹², M. E. Hayden¹⁴, C. A. Isaac³, A. Ishida¹⁵, M. A. Johnson^{4,5}, S. A. Jones³, S. Jonsell¹⁶, L. Kurchaninov⁷, N. Madsen³, M. Mathers¹⁷, D. Maxwell³, J. T. K. McKenna⁷, S. Menary¹⁷, J. M. Michan^{7,18}, T. Momose¹², J. J. Munich¹⁴, P. Nolan¹, K. Olchanski⁷, A. Olin^{7,19}, P. Pusa¹, C. Ø. Rasmussen², F. Robicheaux²⁰, R. L. Sacramento⁹, M. Sameed³, E. Sarid²¹, D. M. Silveira⁹, S. Stracka²², G. Stutter², C. So¹¹, T. D. Tharp²³, J. E. Thompson¹⁷, R. I. Thompson¹¹, D. P. van der Werf^{3,24} & J. S. Wurtele⁸

Published online 19 December 2016; print version 26 January 2017

CPT tested to 2 x 10⁻¹⁰

~15 atoms trapped at a time

2010 – first trapping

"The very fact of a proof-ofprinciple demonstration of wallfree confinement of even a small number of antimatter atoms has an intrinsic philosophical value."

2016 - spectroscopy

There is no doubt that this result is of high originality and of highest relevance to a broad scientific community, and thus, merits publication in any journal the authors have selected. I congratulate the editors that the ALPHA collaboration has selected Nature to publish this ground-breaking work.

Hyperfine Studies – 2016

1S ground state

$$\delta f_{\rm hf} = (1420.4 \pm 0.5) \, \text{MHz}$$

LETTER

OPEN doi:10.1038/nature23446

Observation of the hyperfine spectrum of antihydrogen

M. Ahmadi¹, B. X. R. Alves², C. J. Baker³, W. Bertsche^{4,5}, E. Butler⁶, A. Capra⁷, C. Carruth⁸, C. L. Cesar⁹, M. Charlton³, S. Cohen¹⁰, R. Collister⁷, S. Eriksson³, A. Evans¹¹, N. Evetts¹², J. Fajans⁸, T. Friesen², M. C. Fujiwara⁷, D. R. Gill⁷, A. Gutierrez^{12,13}, J. S. Hangst², W. N. Hardy¹², M. E. Hayden¹⁴, C. A. Isaac³, A. Ishida¹⁵, M. A. Johnson^{4,5}, S. A. Jones³, S. Jonsell¹⁶, L. Kurchaninov⁷, N. Madsen³, M. Mathers¹⁷, D. Maxwell³, J. T. K. McKenna⁷, S. Menary¹⁷, J. M. Michan^{7,18}, T. Momose¹², J. J. Munich¹⁴, P. Nolan¹, K. Olchanski⁷, A. Olin^{7,19}, P. Pusa¹, C. Ø. Rasmussen², F. Robicheaux²⁰, R. L. Sacramento⁹, M. Sameed³, E. Sarid²¹, D. M. Silveira⁹, S. Stracka^{7,22}, G. Stutter², C. So¹¹, T. D. Tharp²³, J. E. Thompson¹⁷, R. I. Thompson¹¹, D. P. van der Werf^{3,24} & J. S. Wurtele⁸

2016 Restate 2S line

LETTER

OPEN

https://doi.org/10.1038/s41586-018-0017-2

Characterization of the 1S-2S transition in antihydrogen

M. Ahmadi¹, B. X. R. Alves², C. J. Baker³, W. Bertsche^{4,5}, A. Capra⁶, C. Carruth⁷, C. L. Cesar⁸, M. Charlton³, S. Cohen⁹, R. Collister⁶, S. Eriksson³, A. Evans¹⁰, N. Evetts¹¹, J. Fajans⁷, T. Friesen², M. C. Fujiwara⁶, D. R. Gill⁶, J. S. Hangst^{2*}, W. N. Hardy¹¹, M. E. Hayden¹², C. A. Isaac³, M. A. Johnson^{4,5}, J. M. Jones³, S. A. Jones^{2,3}, S. Jonsell¹³, A. Khramov⁶, P. Knapp³, L. Kurchaninov⁶, N. Madsen³, D. Maxwell³, J. T. K. McKenna⁶, S. Menary¹⁴, T. Momose¹¹, J. J. Munich¹², K. Olchanski⁶, A. Olin^{6,15}, P. Pusa¹, C. Ø. Rasmussen², F. Robicheaux¹⁶, R. L. Sacramento⁸, M. Sameed^{3,4}, E. Sarid¹⁷, D. M. Silveira⁸, G. Stutter², C. So¹⁰, T. D. Tharp¹⁸, R. I. Thompson¹⁰, D. P. van der Werf^{3,19} & J. S. Wurtele⁷

State of the Art

Theodor Hänsch

Published 22 August 2018

LETTER

OPEN

https://doi.org/10.1038/s41586-018-0435-1

Observation of the 1S–2P Lyman– α transition in antihydrogen

M. Ahmadi¹, B. X. R. Alves², C. J. Baker³, W. Bertsche^{4,5}, A. Capra⁶, C. Carruth⁷, C. L. Cesar⁸, M. Charlton³, S. Cohen⁹, R. Collister⁶, S. Eriksson³, A. Evans¹⁰, N. Evetts¹¹, J. Fajans⁷, T. Friesen^{2,10}, M. C. Fujiwara^{6*}, D. R. Gill⁶, J. S. Hangst^{2*}, W. N. Hardy¹¹, M. E. Hayden¹², E. D. Hunter⁷, C. A. Isaac³, M. A. Johnson^{4,5}, J. M. Jones³, S. A. Jones^{2,3}, S. Jonsell¹³, A. Khramov⁶, P. Knapp³, L. Kurchaninov⁶, N. Madsen³, D. Maxwell³, J. T. K. McKenna⁶, S. Menary¹⁴, J. M. Michan^{6,15}, T. Momose^{11,16*}, J. J. Munich¹², K. Olchanski⁶, A. Olin^{6,17}, P. Pusa¹, C. Ø. Rasmussen², F. Robicheaux¹⁸, R. L. Sacramento⁸, M. Sameed⁴, E. Sarid¹⁹, D. M. Silveira⁸, D. M. Starko¹⁴, G. Stutter², C. So¹⁰, T. D. Tharp²⁰, R. I. Thompson^{6,10}, D. P. van der Werf^{3,21} & J. S. Wurtele⁷

Most recent published result on 2p levels: 2020

nature

V

Explore Content > Journal Information > Publish With Us >

nature > articles > article

Article | Open Access | Published: 19 February 2020

Investigation of the fine structure of antihydrogen

The ALPHA Collaboration

Nature 578, 375–380(2020) | Cite this article
24k Accesses | 6 Citations | 364 Altmetric | Metrics

• Determination of the Lamb shift $({}^{2}S_{1/2})$ to ${}^{2}P_{1/2}$ in antimatter

Accumulating Antihydrogen Atoms 18 December 2017

- about 6 hours of antihydrogen stacking; trapping not optimised
- 90/93 good shots from AD (we catch every second one)
- interesting future perspectives better control of systematics for spectroscopy, gravitation, continuous laser cooling, release to zero field (hbar beam)
- this is larger than any per-YEAR sample we ever considered in the initial design of ALPHA-g

Laser cooling

- Need a closed, two level system
- Typical photon energies of a few eV, recoil momentum of a few eV/c
- High scattering rates on resonance for CW lasers transitions can be *ns*
- The Doppler shift introduces velocity dependence
- Level width determines ultimate temperature obtainable Doppler cooling (~mK)

1S-2S Lineshape with Laser Cooling

Finally on the cover – April 2021!

nature

Again nominated for Physics Breakthrough of the Year (Physics World)—but didn't win...

ALPHA-g

- trap some antihydrogen in a vertical trap
- release it
- see where it goes radial time projection chamber annihilation detector

ALPHA-g Radial TPC (TRIUMF)

ready when needed

RECFA, May 2022

J.S. Hangst, Aarhus University

Antiproton Annihilations observed in ALPHA-g

ELENA Ring

Approval of ELENA directly linked to ALPHA success with trapping of antihydrogen in 2010

Reduce pbar energy from 5 MeV to 100 keV

Up to 10 times more pbars captured

Electrostatic switching allows delivery to multiple experiments; 24 hour operation

Sent first pbars to Gbar in 2018

Operation for other experiments in August 2021

Worked on the very first shot to ALPHA in 2021!

Total paradigm shift: 24 hour pbars!

First shot of pbars to ALPHA from ELENA:2021

- Very first shot went down the centre of the beamline on the first day of the run!
- Awe and respect for the AD/ELENA team...

phosphor screen upstream of ALPHA catching trap

ALPHA from 2022 onward

- gravity with antimatter up/down question and precision measurements
- antimatter spectroscopy to hydrogen-like precision:

antihydrogen can now be colder than the hydrogen used for the most precise measurements on normal matter...

ALPHA is installing a primary time/frequency standard (Cs fountain clock) at CERN in 2022

- other spectral lines antiproton charge radius...
- measurements on hydrogen with ALPHA-developed techniques?
- long-term possibility: anti-deuterium?

ALPHA Funding

NICE (and other centres in DK) 2005-present

FNU: magnets for ELENA 2010 ~ 1 MCHF

Carlsberg Foundation: ALPHA-2 solenoid financing 2011! MEur

ERC Advanced Grant for ALPHA-2 spectroscopy 2013 – 2018 2.2MEur

Carlsberg Semper Ardens Grant for ALPHA-G 2016 - 2021 2 MEur

Carlsberg Semper Ardens Grant for ALPHA-3 2018 – 2023 2 MEur

Probably the best antihydrogen experiment in the world...

All of our friends are rock stars...Crosby and Nash

All of our friends are rock stars 2...Muse

Metallica

755 official groups with 13869 international visitors in 2018

Jack White

Roger Waters

CERN 13 March 2019

Slayer

