Antihydrogen Laser PHysics Apparatus University of Calgary, Aarhus University, Un Denmark University of British Columbia, Canada Univ 24 faculty 13 postdocs 10 PhD students 5 - 20 undergraduates rdue University, st Lafayette, USA Federal University of Rio de Janeiro, Brazil Stockholm University, Sweden MANCHESTE 1824 University of Manchester. SFU Simon Fraser University, Canada` TRIUMF, Canada University of Wales Swansea, UK **Cockcroft Institute, UK** York University, Canada ### **Motivations in Brief** - •Tests of fundamental symmetries by applying *precise and* accurate atomic physics techniques to anti-atoms: - •CPT violation? - •Lorentz invariance violation? Physics beyond the Standard Model? The initial physics goal of ALPHA was to TRAP antihydrogen atoms, so that they can be studied in detail. - •(Anti)-Gravity two previously approved experiments at CERN; AEGIS and Gbar proof of principle by ALPHA; now ALPHA-g is ready to go - •... of course this is all *motivated* by the apparent baryon asymmetry in the universe ## **The Question** How could you possibly work in Denmark and *not* want to know the answer to this? # The Holy Grail - Antihydrogen Spectroscopy If antihydrogen can be trapped, *any* type of spectroscopic measurement can be contemplated Antihydrogen Hydrogen - Doppler effect cancels - High precision in matter sector - test of CPT theorem # The CERN AD ### **Trapping Antihydrogen** # **Trapping Neutral Anti-atoms?** Well depth $\sim 0.7 \text{ K/T}$ #### Need to produce the atoms so they are born trapped Broken rotational symmetry: Can we superpose this on a Penning trap? ### **ALPHA Silicon Vertex Detector** 3-layer, double-sided modules Detect antiproton anihilation (not e⁺) Fabricated by U. Liverpool # **Event Topology** Typical antiproton annihilation: Typical cosmic ray charged pions ... not much going on here #### **Trapped Antihydrogen: 2010** # LETTER doi:10.1038/nature09610 ### Trapped antihydrogen G. B. Andresen¹, M. D. Ashkezari², M. Baquero-Ruiz³, W. Bertsche⁴, P. D. Bowe¹, E. Butler⁴, C. L. Cesar⁵, S. Chapman³, M. Charlton⁴, A. Deller⁴, S. Eriksson⁴, J. Fajans^{3,6}, T. Friesen⁷, M. C. Fujiwara^{8,7}, D. R. Gill⁸, A. Gutierrez⁹, J. S. Hangst¹, W. N. Hardy⁹, M. E. Hayden², A. J. Humphries⁴, R. Hydomako⁷, M. J. Jenkins⁴, S. Jonsell¹⁰, L. V. Jørgensen⁴, L. Kurchaninov⁸, N. Madsen⁴, S. Menary¹¹, P. Nolan¹², K. Olchanski⁸, A. Olin⁸, A. Povilus³, P. Pusa¹², F. Robicheaux¹³, E. Sarid¹⁴, S. Seif el Nasr⁹, D. M. Silveira¹⁵, C. So³, J. W. Storey⁸†, R. I. Thompson⁷, D. P. van der Werf⁴, J. S. Wurtele^{3,6} & Y. Yamazaki^{15,16} Published online in *Nature*, 17 November 2010 Physics Breakthrough of the Year - 2010 Physics World (UK) One of the top ten physics stories of 2010 - American Institute of Physics Most clicked-on story on Nature website for all of 2010 ### Breit-Rabi Diagram (assumed) # LETTER # Resonant quantum transitions in trapped antihydrogen atoms C. Amole¹, M. D. Ashkezari², M. Baquero-Ruiz³, W. Bertsche^{4,5,6}, P. D. Bowe⁷, E. Butler⁸, A. Capra¹, C. L. Cesar⁹, M. Charlton⁴, A. Deller⁴, P. H. Donnan¹⁰, S. Eriksson⁴, J. Fajans^{3,11}, T. Friesen¹², M. C. Fujiwara^{12,13}, D. R. Gill¹³, A. Gutierrez¹⁴, J. S. Hangst⁷, W. N. Hardy^{14,15}, M. E. Hayden², A. J. Humphries⁴, C. A. Isaac⁴, S. Jonsell¹⁶, L. Kurchaninov¹³, A. Little³, N. Madsen⁴, J. T. K. McKenna¹⁷, S. Menary¹, S. C. Napoli⁴, P. Nolan¹⁷, K. Olchanski¹³, A. Olin^{13,18}, P. Pusa¹⁷, C. Ø. Rasmussen⁷, F. Robicheaux¹⁰, E. Sarid¹⁹, C. R. Shields⁴, D. M. Silveira²⁰†, S. Stracka¹³, C. So³, R. I. Thompson¹², D. P. van der Werf⁴ & J. S. Wurtele^{3,11} - •Published in *nature* online 7 March, 2012 - •First measurement on an antimatter atom precision: few parts in 10^3 - •Shows that it is possible to do physics with few atoms - •...but we have a lot more now ### **ALPHA-2 (2012)** # **ALPHA-2: 2012** ## First ALPHA-2 result published in *nature 2016* # LETTER **OPEN** doi:10.1038/nature16491 # An improved limit on the charge of antihydrogen from stochastic acceleration M. Ahmadi¹, M. Baquero-Ruiz^{2,3}, W. Bertsche^{4,5}, E. Butler^{6,7}, A. Capra⁸, C. Carruth², C. L. Cesar⁹, M. Charlton¹⁰, A. E. Charman², S. Eriksson, L. T. Evans², N. Evetts¹¹, J. Fajans², T. Friesen¹², M. C. Fujiwara¹³, D. R. Gill¹³, A. Gutierrez¹¹, J. S. Hangst¹², W. N. Hardy¹¹, M. E. Hayden¹⁴, C. A. Isaac¹⁰, A. Ishida⁷, S. A. Jones¹⁰, S. Jonsell¹⁵, L. Kurchaninov¹³, N. Madsen¹⁰, D. Maxwell¹⁰, J. T. K. McKenna¹³, S. Menary⁸, J. M. Michan¹³, T. Momose¹⁶, J. J. Munich¹⁴, P. Nolan¹, K. Olchanski¹³, A. Olin^{13,17}, A. Povilus², P. Pusa¹, C. Ø. Rasmussen¹², F. Robicheaux¹⁸, R. L. Sacramento⁹, M. Sameed¹⁰, E. Sarid¹⁹, D. M. Silveira⁹, C. So², T. D. Tharp¹², R. I. Thompson²⁰, D. P. van der Werf¹⁰, J. S. Wurtele^{2,21} & A. I. Zhmoginov² charge is consistent with zero to 0.71 ppb atoms of normal matter are neutral to 1 in 10^{21} ### **Configuration for Laser Physics – 1S-2S transition** # LETTER OPEN doi:10.1038/nature21040 # Observation of the 1S-2S transition in trapped antihydrogen M. Ahmadi¹, B. X. R. Alves², C. J. Baker³, W. Bertsche^{4,5}, E. Butler⁶, A. Capra⁷, C. Carruth⁸, C. L. Cesar⁹, M. Charlton³, S. Cohen¹⁰, R. Collister⁷, S. Eriksson³, A. Evans¹¹, N. Evetts¹², J. Fajans⁸, T. Friesen², M. C. Fujiwara⁷, D. R. Gill⁷, A. Gutierrez¹³, J. S. Hangst², W. N. Hardy¹², M. E. Hayden¹⁴, C. A. Isaac³, A. Ishida¹⁵, M. A. Johnson^{4,5}, S. A. Jones³, S. Jonsell¹⁶, L. Kurchaninov⁷, N. Madsen³, M. Mathers¹⁷, D. Maxwell³, J. T. K. McKenna⁷, S. Menary¹⁷, J. M. Michan^{7,18}, T. Momose¹², J. J. Munich¹⁴, P. Nolan¹, K. Olchanski⁷, A. Olin^{7,19}, P. Pusa¹, C. Ø. Rasmussen², F. Robicheaux²⁰, R. L. Sacramento⁹, M. Sameed³, E. Sarid²¹, D. M. Silveira⁹, S. Stracka²², G. Stutter², C. So¹¹, T. D. Tharp²³, J. E. Thompson¹⁷, R. I. Thompson¹¹, D. P. van der Werf^{3,24} & J. S. Wurtele⁸ Published online 19 December 2016; print version 26 January 2017 CPT tested to 2 x 10⁻¹⁰ ~15 atoms trapped at a time # 2010 – first trapping "The very fact of a proof-ofprinciple demonstration of wallfree confinement of even a small number of antimatter atoms has an intrinsic philosophical value." # 2016 - spectroscopy There is no doubt that this result is of high originality and of highest relevance to a broad scientific community, and thus, merits publication in any journal the authors have selected. I congratulate the editors that the ALPHA collaboration has selected Nature to publish this ground-breaking work. #### **Hyperfine Studies – 2016** 1S ground state $$\delta f_{\rm hf} = (1420.4 \pm 0.5) \, \text{MHz}$$ ### LETTER OPEN doi:10.1038/nature23446 # Observation of the hyperfine spectrum of antihydrogen M. Ahmadi¹, B. X. R. Alves², C. J. Baker³, W. Bertsche^{4,5}, E. Butler⁶, A. Capra⁷, C. Carruth⁸, C. L. Cesar⁹, M. Charlton³, S. Cohen¹⁰, R. Collister⁷, S. Eriksson³, A. Evans¹¹, N. Evetts¹², J. Fajans⁸, T. Friesen², M. C. Fujiwara⁷, D. R. Gill⁷, A. Gutierrez^{12,13}, J. S. Hangst², W. N. Hardy¹², M. E. Hayden¹⁴, C. A. Isaac³, A. Ishida¹⁵, M. A. Johnson^{4,5}, S. A. Jones³, S. Jonsell¹⁶, L. Kurchaninov⁷, N. Madsen³, M. Mathers¹⁷, D. Maxwell³, J. T. K. McKenna⁷, S. Menary¹⁷, J. M. Michan^{7,18}, T. Momose¹², J. J. Munich¹⁴, P. Nolan¹, K. Olchanski⁷, A. Olin^{7,19}, P. Pusa¹, C. Ø. Rasmussen², F. Robicheaux²⁰, R. L. Sacramento⁹, M. Sameed³, E. Sarid²¹, D. M. Silveira⁹, S. Stracka^{7,22}, G. Stutter², C. So¹¹, T. D. Tharp²³, J. E. Thompson¹⁷, R. I. Thompson¹¹, D. P. van der Werf^{3,24} & J. S. Wurtele⁸ ### 2016 Restate 2S line # LETTER **OPEN** https://doi.org/10.1038/s41586-018-0017-2 # Characterization of the 1S-2S transition in antihydrogen M. Ahmadi¹, B. X. R. Alves², C. J. Baker³, W. Bertsche^{4,5}, A. Capra⁶, C. Carruth⁷, C. L. Cesar⁸, M. Charlton³, S. Cohen⁹, R. Collister⁶, S. Eriksson³, A. Evans¹⁰, N. Evetts¹¹, J. Fajans⁷, T. Friesen², M. C. Fujiwara⁶, D. R. Gill⁶, J. S. Hangst^{2*}, W. N. Hardy¹¹, M. E. Hayden¹², C. A. Isaac³, M. A. Johnson^{4,5}, J. M. Jones³, S. A. Jones^{2,3}, S. Jonsell¹³, A. Khramov⁶, P. Knapp³, L. Kurchaninov⁶, N. Madsen³, D. Maxwell³, J. T. K. McKenna⁶, S. Menary¹⁴, T. Momose¹¹, J. J. Munich¹², K. Olchanski⁶, A. Olin^{6,15}, P. Pusa¹, C. Ø. Rasmussen², F. Robicheaux¹⁶, R. L. Sacramento⁸, M. Sameed^{3,4}, E. Sarid¹⁷, D. M. Silveira⁸, G. Stutter², C. So¹⁰, T. D. Tharp¹⁸, R. I. Thompson¹⁰, D. P. van der Werf^{3,19} & J. S. Wurtele⁷ #### State of the Art Theodor Hänsch #### Published 22 August 2018 # LETTER **OPEN** https://doi.org/10.1038/s41586-018-0435-1 # Observation of the 1S–2P Lyman– α transition in antihydrogen M. Ahmadi¹, B. X. R. Alves², C. J. Baker³, W. Bertsche^{4,5}, A. Capra⁶, C. Carruth⁷, C. L. Cesar⁸, M. Charlton³, S. Cohen⁹, R. Collister⁶, S. Eriksson³, A. Evans¹⁰, N. Evetts¹¹, J. Fajans⁷, T. Friesen^{2,10}, M. C. Fujiwara^{6*}, D. R. Gill⁶, J. S. Hangst^{2*}, W. N. Hardy¹¹, M. E. Hayden¹², E. D. Hunter⁷, C. A. Isaac³, M. A. Johnson^{4,5}, J. M. Jones³, S. A. Jones^{2,3}, S. Jonsell¹³, A. Khramov⁶, P. Knapp³, L. Kurchaninov⁶, N. Madsen³, D. Maxwell³, J. T. K. McKenna⁶, S. Menary¹⁴, J. M. Michan^{6,15}, T. Momose^{11,16*}, J. J. Munich¹², K. Olchanski⁶, A. Olin^{6,17}, P. Pusa¹, C. Ø. Rasmussen², F. Robicheaux¹⁸, R. L. Sacramento⁸, M. Sameed⁴, E. Sarid¹⁹, D. M. Silveira⁸, D. M. Starko¹⁴, G. Stutter², C. So¹⁰, T. D. Tharp²⁰, R. I. Thompson^{6,10}, D. P. van der Werf^{3,21} & J. S. Wurtele⁷ #### Most recent published result on 2p levels: 2020 nature V Explore Content > Journal Information > Publish With Us > nature > articles > article Article | Open Access | Published: 19 February 2020 ### Investigation of the fine structure of antihydrogen The ALPHA Collaboration Nature 578, 375–380(2020) | Cite this article 24k Accesses | 6 Citations | 364 Altmetric | Metrics • Determination of the Lamb shift $({}^{2}S_{1/2})$ to ${}^{2}P_{1/2}$ in antimatter # Accumulating Antihydrogen Atoms 18 December 2017 - about 6 hours of antihydrogen stacking; trapping not optimised - 90/93 good shots from AD (we catch every second one) - interesting future perspectives better control of systematics for spectroscopy, gravitation, continuous laser cooling, release to zero field (hbar beam) - this is larger than any per-YEAR sample we ever considered in the initial design of ALPHA-g ### Laser cooling - Need a closed, two level system - Typical photon energies of a few eV, recoil momentum of a few eV/c - High scattering rates on resonance for CW lasers transitions can be *ns* - The Doppler shift introduces velocity dependence - Level width determines ultimate temperature obtainable Doppler cooling (~mK) ### 1S-2S Lineshape with Laser Cooling ### Finally on the cover – April 2021! #### nature Again nominated for Physics Breakthrough of the Year (Physics World)—but didn't win... # ALPHA-g - trap some antihydrogen in a vertical trap - release it - see where it goes radial time projection chamber annihilation detector # **ALPHA-g Radial TPC (TRIUMF)** ready when needed RECFA, May 2022 J.S. Hangst, Aarhus University ### **Antiproton Annihilations observed in ALPHA-g** ### **ELENA Ring** Approval of ELENA directly linked to ALPHA success with trapping of antihydrogen in 2010 Reduce pbar energy from 5 MeV to 100 keV Up to 10 times more pbars captured Electrostatic switching allows delivery to multiple experiments; 24 hour operation Sent first pbars to Gbar in 2018 Operation for other experiments in August 2021 Worked on the very first shot to ALPHA in 2021! Total paradigm shift: 24 hour pbars! ## First shot of pbars to ALPHA from ELENA:2021 - Very first shot went down the centre of the beamline on the first day of the run! - Awe and respect for the AD/ELENA team... phosphor screen upstream of ALPHA catching trap #### **ALPHA from 2022 onward** - gravity with antimatter up/down question and precision measurements - antimatter spectroscopy to hydrogen-like precision: antihydrogen can now be colder than the hydrogen used for the most precise measurements on normal matter... ALPHA is installing a primary time/frequency standard (Cs fountain clock) at CERN in 2022 - other spectral lines antiproton charge radius... - measurements on hydrogen with ALPHA-developed techniques? - long-term possibility: anti-deuterium? # **ALPHA Funding** NICE (and other centres in DK) 2005-present FNU: magnets for ELENA 2010 ~ 1 MCHF Carlsberg Foundation: ALPHA-2 solenoid financing 2011! MEur ERC Advanced Grant for ALPHA-2 spectroscopy 2013 – 2018 2.2MEur Carlsberg Semper Ardens Grant for ALPHA-G 2016 - 2021 2 MEur Carlsberg Semper Ardens Grant for ALPHA-3 2018 – 2023 2 MEur Probably the best antihydrogen experiment in the world... ## All of our friends are rock stars...Crosby and Nash #### All of our friends are rock stars 2...Muse # Metallica 755 official groups with 13869 international visitors in 2018 # **Jack White** # **Roger Waters** **CERN 13 March 2019** ### Slayer