DD4hep

Recent Developments and Experience with DD4hep

- Introduction
- Simulation
- Conditions
- Alignment
- Miscellaneous topics

M.Frank, F.Gaede, M.Petric, A.Sailer

March 27th, 2014

HSF simulation meeting, May 23rd., 2022, CERN

Markus Frank / CERN

Motivation and Goal

- For the full experiment life cycle
 - detector concept development, optimization
 - detector construction and operation
 - "Anticipate the unforeseen"
- Consistent description, single source, supporting
 - simulation, reconstruction, analysis
- Full description, including
 - Geometry, readout, alignment, calibration etc.

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

DD4her

Philosophy of DD4hep & Co

Effort of very few people with a simple, humble and comprehensive vision

Detector description for the lazy Minimal effort, pragmatic, no technical restrictions, No obstacles induced by religious wars

- DD4hep is the "glue"
 - Bring together what belongs together:
 - Detector structure, geometry, simulation, conditions, etc
 - Reuse existing modules: TGeo, Geant4, Assimp, etc
 - CAD support

Main Entities

Detector description is not only geometry!

- Geometrical hierarchy
 - Volume: Shape + material
 - PlacedVolume
- **Volume + placement matrix mother**
- Structural hierarchy
 - Detector
 - DetElement

- Experiment Parts of the experiment
- What is the difference between geometrical and structural hierarchy

Example: ALEPH TPC

DD4hep

\$> geoDisplay -input examples/AlignDet/compact/AlephTPC.xml

AIDA2020

HSF simulation meeting, May 23rd., 2022, CERN

HSF simulation meeting, May 23rd., 2022, CERN

6

What is Detector Description ?

DD4hep

• Tree-like hierarchy of "detector elements"

- Macroscopic (ie. not a strip)
- Subdetectors or parts of subdetectors
- Detector Element
 - Geometry
 - Key to access
 - Environmental data
 - Alignment data
 - Derivatives of these
 - Optionally experiment, subdetector or activity specific data

7

Saga in 5 Episodes

- DD4hep basics/core ⁽¹⁾
- DDG4 Simulation using Geant4 ⁽¹⁾
 - Fast simulation ⁽⁴⁾
- DDRec Reconstruction supp.⁽²⁾
- DDCond Detector conditions ⁽³⁾
- DDAlign Alignment support ⁽³⁾
- DDDigi Generic Digitization ⁽⁴⁾

⁽¹⁾ Mature state: bug-fixes and maintenance
 ⁽²⁾ F. Gaede (WP3, Task 3.6)
 ⁽³⁾ Work since start of AIDA²⁰²⁰
 ⁽⁴⁾ Planned extensions

HSF simulation meeting, May 23rd., 2022, CERN

9

HSF simulation meeting, May 23rd., 2022, CERN

Markus Frank / CERN

DD4hep

CMS described with DD4hep

DD4hep baseline

CHEP 2019, Adelaide, AU

(C.Vuosalo / CMS)

10

Circular Electron Positron Collider

DD4hep Core

- Handles the detector element functionality
- Basically stable
 - Bug fixes, enhancements
- Objects are fully reflective
 - C++ dictionary defined
 - Intrinsic support for cross-language development
- Reflection supports interactivity
 - Cint (Cling) and python (cppyy)
- CHEP 2013

DD4hep: A Detector Description Toolkit for High Energy Physics Experiments

Views & Extensions:

Users Customize Functionality

DD4hep is based on handles (smart pointers)

- Rarely deal with data directly
- Possibility of many views based on the same DE data

Recon struction

- Same 'data' associated to different 'behaviors'
- All views are consistent and creation is efficient: pointer-copy
- User data to be used with prudence
 - Blessing and a curse
 - User data: common knowledge

Calibration

Standard Detector Palette DDDetectors

- Used for design studies (LC, FCC-eh)
- Origin from the SiD detector model
 - Layer based detectors
 - Tracker barrel & endcap
 - Several calorimeter constructs
- Partially with measurement surfaces (F. Gaede)
 - Uses plugin mechanism to enhance detector elements
 - Mechanism to attach user defined optional data
 Proof that <u>'anticipate the unforeseen'</u> works
 - NOT intrusive to detector constructors

CLICdp CLIC Detector Project

Д

International Linear Collider

(F.Gaede, L.Shaojun)

Xiaorong Zhou State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Joint Workshop on Future Tau-Charm Factory 2018.12.4-2018.12-7, Paris

Progress on detector simulation

- STCF software team has been formed.
- OSCAR: Offline Software of Super Tau-Charm Facility.
- Detector geometry with DD4hep.

LHCb: Velo Pixel Single Side

HSF simulation meeting, May 23rd., 2022, CERN

Simulation: DDG4

- Simulation
- Geometry +
 Detector response +
 Physics
- Mature status
 - Eventual bug fixes, smaller improvements
 - Phase of constant re-validation
- Automatic geometry conversion
- Extensive use of plugin mechanism → configuration
- Palette of standard sensitive detectors
- Support for MC truth handling
- CHEP2015

DDG4 A Simulation Framework based on the DD4hep Detector Description Toolkit

Example of an Action Sequence Generator Action: Event Overlay with Features

Init Geant4GenerationActionInit Combine simple and reusable modules Signal Geant4InputAction Coll. Geant4InteractionVertexBoost Input module Geant4InteractionVertexSmear Any data format Coll.2 Back-Geant4GeneratorActionSequence Geant4InputAction ground Geant4InteractionVertexSmear **Primary vertex smearing** Geant4InteractionMerger oð **Primary vertex boost** erge reate 4Prim Geant4Primaryhandler **Common:** initialization, final merge Start Simulation Similar mechanism for sensitve, tracking, event and run actions

HSF simulation meeting, May 23rd., 2022, CERN

Markus Frank / CERN

21

DDG4 in Production

- **Deployed for CLICdp in DIRAC**
 - For every detector study (now ~14) central generation
- **ILC started mass production**

SCTF - Novosibirsk

L. Shekhtman, A. Sokolov, Vijayanand KV, T. Maltsev Budker Institute of Nuclear Physics (BINP)

Joint Workshop on Future Tau-Charm Factory 2018.12.4-2018.12-7, Paris

Inner Tracker CGEM DD4hep simulation E 200 E 200 on's hits in solid $p_{-} = 50 \text{ MeV/c}$ p_ = 55 MeV/c > > 150 150 100 100 50 50 0 0 -50 -50-100 -100-150 -150--200-200-200-150-100200 -200 -150 -100 200 100150x [mm] x [mm]

- Pions with momenta less than 50 MeV/c do not pass through the beampipe
- Starting from p_{π} = 55 MeV/c two layers can be reached by pions

12

DDSim: DDG4 CLI

- Python based command line interface to DDG4
- DDSim offers to the all usually used plugins of DDG4 and supports most detector models of the linear collider community
 - Detector description, simulation input, G4 steering, vertex offsets, mag.field setup, physics list, etc.
 - ~ 100 command line arguments for nearly all wishes
- DDSim accepts python code snippets for fine grained user specialization
- Allows the creation of steering files
 - Re-produce results
 - Mass production

DDCond: Conditions Data

- Time dependent data necessary to process the detector response [of particle collisions]
 - slowly changing: every run O(1h), lumi section O(10min) ...
 - multiple conditions change in batches: require discipline
 - conditions may be the result of computation(s)
- DDCond deals with the management of these data
 - Efficient and fast, if used according to design ideas
 - Manages resources
 - Supports multi threading by design Well defined locking points
 - Cache where necessary but no more
 - **CHEP2018**

Conditions and Alignment extensions to the DD4hep Detector Description Toolkit

DDCond: Data Cache

Access key: Hash of DetElement path and condition name

ConditionsManager Door keeper Manage different IOV type "fill" data types Cond 1 IOV type "run" Cond 2 IOV type Fill Cond 1 "lumi-section" 1000 Cond N IOV type Cond 2 "YEAR" Run 127895 Cond N Cond 1 Data Stores: Cond 2 Cond 1 Fill -- Organized by IOV 1001 -- Provide and manage data Cond 2 Cond N Run -- Cache for multiple 127896 Cond N configurations Cond 1 -- Relatively static -- Structure hidden Cond 2 Fill Cond 1 XXXX => Only data cache Cond N Cond 2 => Once loaded data stay Run NNNN unless explicitly droped Cond N

HSF simulation meeting, May 23rd., 2022, CERN

DDCond Implementation The Data Cache

DD4hep

HSF simulation meeting, May 23rd., 2022, CERN

DDCond Implementation IOV Slice Projection

DD4hep

run, fill, epoch, year, ...

Derived Conditions

- Derived conditions are built using callback mechanism
 - Data computed from "measured" conditions
 - Callbacks are equivalent to persistent data addresses
- Computation is part of the slice creation
 - First load static conditions
 - Then compute dependent data
 ...and also data dependent on dependent data etc.
 - Since conditions in existing pools still can be shared while preparing new IOV depending conditions
 - No locking strategy necessary
 - Prime example: Alignments
 - Alignments must for efficiency be computed 'en block'

Global and Local Alignments

- Global alignment corrections
 - Physically alters geometry Intrinsically supported by ROOT
 - By construction not multi-threaded
 - Possibility to simulate misaligned geometries
- Local alignment corrections
 - Geometry stays intact (either ideal or globally aligned)
 - Multi-threading supported, multiple versions
 - Local alignment corrections are conditions
 - Provide matrices from ideal geometry to world e.g. to adjust hit positions
- Both supported (global with caveat)

DD4hep

30

- Trickle-up the hierarchy and compute the matrices the most effective way with re-use of intermediate results
- Math verified by AIDA²⁰²⁰ alignment task force (C.Burr)

CAD Import, Export and Round-Trips

DD4hep

- If supported by Assimp, DD4hep supports
 - Import of shapes/volumes defined in CAD files into DD4hep
 - Export of partial geometries to CAD format

Import from CAD (STL)

Round-trip: DD4hep / TGeo => CAD => TGeo

CAD: Limitations and Remarks

- CAD Meshes are complex
 - Limitation of the total number of manageable vertices/facets
 - Analytical shapes are simpler than tessellated shapes and likely far better performing for tracking
- CAD comes in many dialects
 - Assimp supports many formats: STL, MD2/3/4, Collada, X3D, ...
 For details see: https://github.com/assimp/assimp/tree/master/code/AssetLib
 - Single mesh CAD, multiple mesh CAD
 - Not all support materials, visualization attributes etc.
 Need to be injected by import mechanism
 - Need to choose optimal format

CHEP2021 Conditions and Alignment extensions to the DD4hep Detector Description Toolkit

HSF simulation meeting, May 23rd., 2022, CERN

CAD: Limitations and Remarks

- CAD Meshes are complex
 - Limitation of the total number of manageable vertices/facets
 - Analytical shapes are simpler than tessellated shapes

Ct

m

np/a

m

is

Dr

and likely far better performing for tracking

CAD: Limitations and Remarks

- Can use round-trips for views in CAD tools
 - Round-trips are not unambiguously reversible
 - Example: Tube => Tessellated cannot be converted back
- Recently discovered
 - G4 complains when placing multiple CAD/tessellated shapes in assemblies
 - Works fine if CAD/tessellated shapes are placed in "real volumes"
 - Not yet understood...last word not yet phrased out
- Shape/Volume creation uses DD4hep plugin mechanism

Import / Export of the Detector Description

- We do not develop such functionality
 - DD4hep is opportunistic on top of ROOT, Geant4, etc.
- Full snapshots can only be created using ROOT
 - ROOT is complete I/O machine and hence can save:
 - Geometry
 - Structural hierarchy
 - Conditions and alignments
 - Imports / Exports of (partial) geometries possible using GDML
 - Plugin to save a sub-tree of the geometry
 - Plugin to load a sub-tree and attach it structurally to a detector element

Support for EDM4hep in DDG4

- DDG4 is the DD4hep toolkit to support Geant4
 - Automatic geometry conversion
 - Plugin based, flexible programming of all user callbacks
- DDG4 supports intrinsically output to ROOT files, LCIO and now EDM4hep
 - New event model developed by Key4hep team, part of HSF Independent talks at this conference elaborate the issue See CHEP2021 talks:

Key4hep: Status and Plans, https://indi.to/HNBpp EDM4hep and podio - The event data model...., https://indi.to/MbMcJ

- Ensures the interoperability of the full DDG4 functionality in the key4hep framework
- Support for EDM4hep based experiment specific digitization and reconstruction programs

How to Define an Experiment ?

- All starting is difficult
 - Lower entrance hurdles
- Beginners guide
 - https://dd4hep.web.cern.ch/dd4hep/page/beginners-guide
 - Fastest track from checkout to simulation
- Other documentation
 - http://dd4hep.cern.ch
 - CHEP presentations
 - User Manuals
 - Not always perfect, but give the overview
 - Up-to-date code reference (doxygen)

Toolkit Users

Increasing interest in the HEP community

- ILC F. Gaede et al.
- CLICdp A. Sailer et al.
- SiD D. Protopopescu et al.
- FCC-eh P. Kostka et al.
- FCC-hh A. Salzburger et al.
- FCC-ee O. Viazlo (CLD design), N. Alipour, G. Voutsinas
- SCTF Super-Charm-Tau Factory designs (Novosibirsk, Bejing)
 - EIC Evaluation considered/started (W. Armstrong et al.)
- CEPC W. Li et al, IHEP
- CMS
- Base line for Run3 upgrade (C.Vuosalo et al.)
- LHCb Upgrade for Run III (B.Couturier et al.)
- CALICE Calorimeter R&D, started

Summary

- DD4hep is getting mature
- Starts being capable of handling all aspects of detector description for the lifetime of an experiment
- Increasing interest in the community and increasing number of users
- Visit us on:
 - http://dd4hep.cern.ch
 - Beginners guide
 - Up to date doxygen information
 - User Manuals

Questions and Answers

HSF simulation meeting, May 23rd., 2022, CERN

Class Diagram: Detector Element Sort of Standard...

Multiple Input Sources

HSF simulation meeting, May 23rd., 2022, CERN

Real World Use Case LHCb Velo Detector

DD4hep

Chosen solution:

- Use IOV dependent projection for event processing
 - This is our new "detector element"
 - Keeps reference to the not changing properties
 - Dress with facade to provide required functionality(ies)

