What is Data
Science

A concise introduction with
typical applications




What is Data Science - Outline

 What is Data Science

* Doing Data Science

* Data Science in Science

* Applications to Geomagnetic field

* Geomagnetic field moment predictions

* Core-Mantle Boundary (CMB) flow and Neural Networks
* Some conclusions

* References



_ | Growth of Data vs.
Growth of Data Analysts

Stored Data accumulating at 28% annual growth rate
Data Analysts in workforce growing at 5.7% growth rate

Source: https://bit.ly/3HBHUQ



What is Data Science

« a multi-disciplinary field
that uses scientific
methods, processes,
algorithms and systems to
extract knowledge and
insights  from  structured
and unstructured data.

Visualization |

Real-world Data Statistical

Applications Computing

Science

Data
Consuiting

Source: https://bit.ly/30dek)B



What is Data Science

« a "concept to unify statistics, data analysis, machine
learning and their related methods" in order to
‘understand and analyze actual phenomena" with data.

’ employs teChanueS and I:Wm' Mathand
theories drawn from many By | St
fields within the context of G
mathematics, statistics, s

Domains/Business

computer  science, and e
information science.

Source: https.//bit.ly/2YTRQ3w



What is Data Science
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“I don't like the look of this.
Searches for gravy and trkey swuffing

“No candy? No flowers? No cards?
are going through the roof !”

Big Data predicted that 67.53%

of you would remember!” =

“You can’t keep adjusting the data
to prove that you would be the best
Valentine’s date for Scarlett Johansson.”



What is Data Science

Analyst

~ Exploratory Data Analysis +—

Machine Learning &

(RN «={ Data Scientist

Data Product Engineering =

Understand customers

WW}/ _—— Define metrics that mater
Make it actionable — Expertise

‘/ (Marketing)

\
A

\,— Translate for nontechnical audience
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Fourth Paradigm of Science
« Thousand of years
- Empirical
» Few hundred of years
- Theoretical
o Last fifty years
- Computational

The

F OURTH
i . PARADIGM

- "Query the world iR S

 Last twenty years
- eSclience (Data Science)
- "Download the world”




What is Data Science
Roles Required in Data Science Project

e Build Data Driven
Platforms

Project
Management

e Storytelling.

¢ Build Dashboards
and other Data
visualizations.

Prove / disprove
hypotheses
Manage
stakeholder
expectations

Maintain a Vision

* Operationalize
Algorithms and

Information and
Data gathering

Data wrangling
Algorithm and ML

Machine Learning
models

e Provide insight
through visual

e Data Integration

models Facilitate

Communication

Visualization
Expert

(-

)/

Source: https://bit.ly/2z5sYqf



How to become a data scientist?
« Data Scientists need to know how to "CODE"

High-level

Lower-level

Scala/Clojure




What is Data Science
Learning Data Science with Python - Libraries

NumPy

NumPYy is a library for the Python
programming language, adding
support for large, multi-
dimensional arrays and matrices,
along with a large collection of
high-level mathematical functions
to operate on these arrays.

‘ 20

A free software machine learning
library that features various
classification, regression and
clustering algorithms including
support vector machines,
random forests, gradient
boosting, and k-means and is
designed to interoperate with the
Python numerical and scientific
libraries NumPy and SciPy.

Pandas

Pandas is a software library
written for the Python
programming language for
data manipulation and
analysis. In particular, it offers
data structures and operations
for manipulating numerical
tables and time series.




What is Data Science

Learning Data Science with Python - Libraries

matpl*.tlib

A plotting library for the Python

programming language and its
numerical mathematics extension
NumPy

4+

TensorFlow

TensorFlow is an open-source
software library for dataflow
programming across a range of
tasks. It is a symbolic math
library, and is also used for
machine learning applications
such as neural networks.

Keras

Keras is an open source
neural network library written
in Python. It is capable of
running on top of TensorFlow,
Microsoft Cognitive Toolkit,
Theano, or MXNet. It was
developed with a focus on
enabling fast experimentation




What is Data Science

Learning Data Science with Python - Tools

-
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Open-source web application that
allows you to create and share
documents that contain live code,
equations, visualizations and
narrative text
hitp.//jupyter.org/

Similar to Jupyter Notebook, but
with the added benefit of “google
doc” type sharing and
collaboration
hitps.//colab.research.google.com

Crestle

Eforiess nfastructure for deep larning

Crestle is your GPU-gnabled
Jupyter environment in the
Cloud.

hitps./\www.crestie.com/
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B Asimple command..  B¥ httpsi//www.clear ...

C 8 scikit-learn.org/stable/

W Additive smoathing... VY Z-library. Theworl.. @ Sci-Hub: removing... .' scikit-learn: machin... [H] Saolving Systems of L. ﬂ Office 365 Login |..

.ﬂ‘l Install User Guide APl Examples Community More >

S c i k it = 1 'e a r. n e e » Simple and efficient tools for predictive data analysis

k . ; a * Accessible to everybody, and reusable in various contexts
Machine Learning tn Python i * Built on NumPy, SciPy, and matplotlib
* Open source, commercially usable - BSD license

{3

Classification Regression Clustering

Identifying which category an object belongs to. Predicting a continucus-valued attribute associated Automatic grouping of similar objects into sets.

with an object.
Applications: Spam detection, image recognition. Applications: Customer segmentation, Grouping

Algorithms: SVM, nearest neighbors, random forest, Applications: Drug responss, Stock prices. experiment outcomeas
and more... Algorithms: SVR, nearest neighbors, random forest, Algorithms: k-Means, spectral clustering, mean-
and more... shift, and more...

E-means clustening on the digits dataset (PCA-reduced data)
Centrosds are marked with white cross

Boosted Decision Tree Regression

20 - ®  training sampes
) — n_estimators=1

—— n_estimators= 300

0.5

=1.%

=20 L

o 1 ks 3 4 5 o
data
Dimensionality reduction Model selection Preprocessing
Reducing the number of random variables to Comparing, validating and choosing parameters and Feature extraction and normalization.
consider. models.
Applications: Transforming input data such as text

Applications: Visualization, Increased efficiency Applications: Improved accuracy via parameter tun- for use with machine learning algorithms.

Algorithms: PCA, feature selaction, non-negative ing Algorithms: preprocessing, feature extraction, and

matrix factorization, and more... Algorithms: grid search, cross validation, metrics, more...



scikit-learn
algorithm cheat-sheet

classification

NOT
WORKING

get
more

data

NOT
WORKING

NO

regression

YES NO

NOT

- YES
Text WORKING
Data —

<100K

NO
>50
YES samples
samples A
predicting a
YES Category
YES

NOT do you have

WORKING labeled
NO data

NO,

<100K YES
samples
YES
predicting a .
quantity

few features
should be
important

NOT
WORKING

number of
categories
known

clustering

<10K

samples

NOT
WORKING

oT
WORKING

NO

YES

1 . . .
o dimensionality
reduction

predicting
structure

Sci-kit cheat sheet
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* Time series
* Flow patterns



Geomagnetic field applications

* Background

* Let discuss two typical examples involving:

* Time series
* Flow patterns

* Don’t worry about the physical and mathematical details because you
can apply the same approaches on a multitude of systems!



Background

* The Earth’s main magnetic field is generated and

maintained against Ohmic loss by dynamo mechanism.

This mechanism takes place in the outer core. One of
the main equation

—

%sz(Vx I§)+77V2I§

where the magnetic diffusivity » = ,o is electrical

(o
conductivity o
* The geomagnetic field exhibits temporal variation on
different timescales: from fraction of a second to
millions of years.

magnetic

flux
lines

rotation

tangent cylinder
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Background

* The Earth’s main magnetic field is generated and

maintained against Ohmic loss by dynamo mechanism.

This mechanism takes place in the outer core. One of
the main equation

oB
&

Source term Dissipative term

where the magnetic diffusivity » = ,o is electrical

(o
conductivity o

* The geomagnetic field exhibits temporal variation on
different timescales: from fraction of a second to
millions of years.
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Time series (4 Myr time series)

* 4 Myr long series of palaeomagnetic dipolar moment estimations (4.2566 Myr
precisely)

* This series is constructed by analyzing samples drilled from the floor of the Indian
Ocean (Meynadier et al., 1994)

* During this time interval, have occurred several inversions of the dipolar
geomagnetic field
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Time series (4 Myr time series)

4 Myr time series of RPI
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Time series (4 Myr time series)

* 4 Myr long series of palaeomagnetic dipolar moment estimations (4.2566 Myr
precisely)

* This series is constructed by analyzing samples drilled from the floor of the Indian
Ocean (Meynadier et al., 1994)

* During this time interval, have occurred several inversions of the dipolar
geomagnetic field

* The actual series contains relative palaeo-intensity (RPI) data

* They can be converted into absolute palaeo-intensity (API) data through a
sifm le multiplicative gauging that does not affect the statistical properties
of the series

* The data are not evenly spaced time-wise and the average timestep is
approximately 2 kyr

e The whole series contains 2160 entries



Recursive Neural Network (RNN)

* A new deep learning paradigm is gaining more and more acknowledgment:
Recursive Neural Network (RNN) (Chinea, 2009)

Neural Network

Deep Learning

X @ et el
e e e e
QWA A

Input Layer @ Hidden Layer © Output Layer

* Recursive Neural Networks are non-linear adaptive models that can learn deep
structured information

* There is some concern in broadly accepting them:
= |Inherent complexity

= Computationally expensive learning phase

* Recently more extensively applied in economics (Moghar and Hamiche, 2020),

ecological systems (Chen et al., 2018), weather forecasting (Singh et al., 2019),
hydrology (Jia et al., 2018)



Motivation

e Construct a Recursive Neural Network (RNN) that can analyze the actual
time series

* Analyze

= Dipolar moment magnitude (positive values)
= Dipolar moment polarity

e Extend the prediction beyond the actual time series (future objective)



Motivation and procedure

e Construct a Recursive Neural Network (RNN) that can analyze the actual
time series

* Analyze

= Dipolar moment magnitude (positive values)
= Dipolar moment polarity

e Extend the prediction beyond the actual time series (future objective)
* Train the RNN with a part of the 4 Myr time series

e Afterwards the RNN will provide a prediction that will be compared with
the remaining chunk of the original series (validation series)

* Analyze the statistical properties of the predicted and validation series



Building and Training the RNN

* The proposed LSTM architecture

T

LSTM 1 LSTM 2 [~ LSTM 3 |—| LSTM 4 DENSE

INPU

Dropout Dropout| |Dropout Dropout

e LSTM: Long Short-Term Memory (Learn from sequences of

observations and well suited for time series forecasting)
jhoxha@epoka.edu.al

o /] Layers of LSTM auka@epoka.edu.al

* Each layer has 50 neurons

* Dropout is 0.2 (to avoid over-fitting!)
e OQutput layer, DENSE, has only 1 neuron


mailto:jhoxha@epoka.edu.al
mailto:auka@epoka.edu.al

Building and Training the RNN

* LSTM architecture implementation with Tensorflow and Keras API

Initialising the RNN

[13]: regressor = Sequential()

Adding the first LSTM layer and some Dropout regularisation

[14]: regressor.add(LSTM(units = 5@, return_sequences = True, input_shape = (X _train.shape[1], 1)))
regressor.add(Dropout(8.2))

Adding a second LSTM layer and some Dropout regularisation

[15]: regressor.add(LSTM(units = 5@, return_sequences = True))
regressor.add(Dropout(0.2))

Adding a third LSTM layer and some Dropout regularisation

[16]: regressor.add(LSTM(units = 5@, return_sequences = True))
regressor. add(Dropout(0.2))

Adding a fourth LSTM layer and some Dropout regularisation

[17]: regressor.add(LSTM(units = 50))
regressor.add(Dropout(0.2))



Building and Training the RNN

Adding the output layer

In [18]: regressor.add(Dense(units = 1))

Compiling the RNN

In [19]: regressor.compile(optimizer = 'adam', loss = 'mean_squared error')

Fitting the RNN to the Training set

In [20]: regressor.fit(X train, y train, epochs = 50, batch size = 32)



Testing the RNN

In [21]:

OQut[21]:

In [22]:

In [23]:

Qut[23]:

Getting the real DIP MOM Magnitude 9|

real dip = an¥[1310:]
real dip.shape

(850, 1)

Getting the predicted dip mom

dataset_total = np.concatenate((training_set, real dip), axis = @)
inputs = dataset total[len(dataset total) - len(real dip) - 60:]
inputs = sc.transform(inputs)
X test = []
for i in range(60, len(inputs)):

X _test.append(inputs[i-6@:1i, @])
X test = np.array(X test)
X test = np.reshape(X test, (X test.shape[@], X test.shape[1], 1))
predicted dip = regressor.predict(X_test)
predicted dip = sc.inverse_ transform(predicted dip)

X test.shape

(850, 60, 1)



Testing the RNN

Visualising the results

In [3@]: plt.plot(real dip, color = 'red', label = 'Real Dip Mom"')
plt.plot(predicted dip, color = 'blue', label = 'Predicted Dip Mom')
plt.title( 'Dip Mom Prediction')

plt.xlabel( 'Time")

plt.ylabel('Dip Mom Magnitude')

plt.legend()

plt.show()
Dip Mom Prediction
| = Real Dip Mom
30 — Predicted Dip Mom
25
wu
=
=
=}
=
= 15
[=]
=
2 10 -
[
0.5
0.0
0 200 400 600 800
Time
In [27]: from scipy.io import savemat
mdic = {"a": predicted dip, "label": "experiment™}
savemat("matlab_dipMom.mat", mdic)

Each prediction is obtained
by the RNN by using 60
precedent entries



Training and Prediction

4 Myr time series of RPI (training + prediction + comparison)

3.5 I I I T I
—RPI data used for training
—RPI data used for comparison
3k —RPI prediction |
2.5 -
2 r i
i Last 850 entries
~
15 - /
. | ’ d :
0.5F 5

0 | | | | | | | |
0 0.5 1 1.5 2 25 3 35 - 4.5

Time (Myr)



Statistical Properties (to analyze the predicted series)

* The predicted and original time series look very alike. How certain can
we be about it?

e Power Spectral Density (PSD): distribution of average power against
frequency for the predicted and validation time series

* This graph provides valuable information about the statistical
properties of e given time series (not the only one)



Spectral Power (dB/Hz)

Power Spectral Density (PSD
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Training and Prediction (polarity considered)

3

4
1 )

—RPI data used for training
—RPI data used for comparison
— RPI prediction

! 1 1 I
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2 2.5
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PSD (polarity considered
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Velocity field at CMB

 The fluid in the outer core and CMB is considered to be and ideal
conductor
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Velocity field at CMB

 The fluid in the outer core and CMB is considered to be and ideal
conductor

—

oB > B >
i Vx(v X B)+77V B (hypothesis “frozen flux”)



Velocity field at CMB

 The fluid in the outer core and CMB is considered to be and ideal
conductor

—:Vx(\7x I§)



Velocity field at CMB

 The fluid in the outer core and CMB is considered to be and ideal
conductor

—:Vx(\7x I§)

* The fluid flow is two-dimensional (v, = 0)



Velocity field at CMB

 The fluid in the outer core and CMB is considered to be and ideal
conductor
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* The fluid flow is two-dimensional (v, = 0)
* There is only one equation, hence there is inherent non-unigueness



Velocity field at CMB

 The fluid in the outer core and CMB is considered to be and ideal
conductor

a—B:Vx(\_/’x I§)

* The fluid flow is two-dimensional (v, = 0)
* There is only one equation, hence there is inherent non-unigueness
e Constraints can be applied on the fluid motion (we apply none!)



Velocity field at CMB

* Only the radial component of the magnetic field is continuous through the
CMB!

e Radial induction equation B =—V.(B \7)

r

A o 3
 Nabla expanded: V= (r-V)+V =—T
P H or
18z 1 0

A
-

-/>

VH

=——0+— 7,
r 06 rsiné op

e The divergence yields: B, +V, -(Br\7) =0.



Velocity field at CMB

* Only the radial component of the magnetic field is continuous through the
CMB!

e Radial induction equation B =—V-(B \7)

r

2 0 5
* Nabla expanded: V= (r-V)+VH :gr@
18z 1 0

Vy=——6+ >
" r o6 rsin¢96¢¢

-/>

* The divergence yields: Br +V, -(Br\7) =0. \ We work with
this equation




Velocity field at CMB

* The velocity is separated into a toroidal and poloidal constituent
(Backus, 1986):
G -ox(m)=o L2 )
sind op 06

6S 1 &S
060 'sin@ dg
1 oT 065 oT 1 &8
sin@ op 06 980 sinf g

e After substitution
e s o floseds 1% 1 %
rSinG 00 ro0°  rsin’o Gl

V =vx[Vx(?s)]=vH(rs)=£o,

* Total velocity \7:(0,

1 T 1088)eB, (1 oT 1 S)oB
rsmé?ago ro6) o0 \rsingod rsin?0op ) o



Velocity field at CMB

* The velocity is separated into a toroidal and poloidal constituent

(Backus, 1986)
\7T=V><(FF):(0, 1 OT’_(?_T]’
sind op 06

S 1 &S
060 'sin@ dg

1 oT 65 oT 1 &8
sin@ op 06 06 sinb g

(10056’5@ 15°S _12 azs;]

rSing 00 ro6° " rsin 0 O

V =vx[Vx(?s)]=vH(rs)=£o,

* Total velocity \7=[0,
e After substitution

[ 1 av, 1@5]@5 ( 1 or 1 asjaBr

rsin@op rod)oo \rsindod rsin®6op) o



Velocity field at CMB

* In spherical harmonics with complex coefficients

5, =Y (EJW (1, +1)g™Y,™ (6, 0)

l,my r

T=2 4" (09

l,,m,

S=2 5V, (0.9)

l3,mg

. OB
B ==
"ot Z

b, my

l+2
a ——
2] e @)

e The coefficients t and s are unknown



Velocity field at CMB

e Substitution into the radial induction equation

Z(ij(l +1) gy (0,0) ==Y z( jl2+2(lz+l)g,':2><

by, my r r ly,my I3, mg

“ sind| dp 00 00 O

Hm 1 {av,mz oY™ oY aY,ms}
x || 1™ 2 3 2 3 .

R e e\ B %
o 2 3 4+ 2
00 00 sin’0 0 dp

* Integration over the CMB (Whaler, 1986)

= —1,(l, +1)Y,™Y,™ } .

l,+2 l,+2 aY m, aY Mg aY m, aY mg
S ST (2] gt 220 T T
, a) (l,+1) r 2 siné dp 00 00 Op

l,,m,

l+2 l,+2 Y m, Y Mg aY m, aY mg
—E(Lj = Z(E) (1,+1)9,™ x(JS 12 Y ] (L +1) ™YY | dQs
rla) (l,+1) r 4 86’ 6«9 sm 0 0Op Op



Velocity field at CMB

e Substitution into the radial induction equation

Z(Ejll+2(l +1)gmY,™ (6 Z Z( jl2+2(| +1) g x

by, my r r l,,m; 13,mg
m 1 | oY, ™ aY,™ oY, oY,
X 3 2 3 2 3 —
“ sind| op 00 00 O
oY,™ oY, oY,™ oY,
| DSy LT Ty gy ||
SV of the magnetic field Magnetic field 00 06 sin“0 Op OJp

* Integration over the CMB

-2 H‘) > “(2] 0.

—t

I3

"+ velocity fields
op 006 00 O

asz aYmg (’ﬂY,zm2 ayl3m3 o s Toroidal and Poloidal
sm@ %

l+2 l,+2 aY m, aY Mg aY m, aY mg
—l(ﬁj . 2(3) (I, +1) g x| Y™ bty S T +1)Y, ™YY dQ s
alorla)  (L+1)S\r : ae @9 Tsinco op O 3



Velocity field at CMB

e Define the Elsasser and Gaunt matrices

1(r l+2 1 a I, +2 aYI Mg aYI m, aYI m, aYI Mg
E '™ ==|— — l,+1)g, " > —— = 1Y,"dQ
e r(aj (|1+1).;%(rj (1. +1)g Xﬂ 00 op 00 Op |

l,+2 l,+2
Gmlm?’:E » L » L, +1) g™ x| L (L +1)+1,(l;+1)—-1,(1, +1) YllemZYdeQ
Il 2 ,




Velocity field at CMB

e Define the Elsasser and Gaunt matrices

1(r l+2 1 a l,+2
EMm == | — 21 (L,+1)g™
Il ( j (|1+1)I2,Zmz(rj (2"‘ )glz

Fia

Elsasser
integral

o™ av,™
860 Op

Gmm::E(IJHQ L ES(EJQQ(|+1 o x| L (L +1)+15 (1, +1) =1, (1, +1) ngml
“  rla) (L+)5\r ? 2 ? J

oY,™ avY,™




Velocity field at CMB

e Define the Elsasser and Gaunt matrices

1(r l+2 1 a l,+2
EMm == | — 21 (L,+1)g™
Il ( j (|1+1)I2,Zmz(rj (2"‘ )glz

Fia

Elsasser
integral

o™ av,™
860 Op

Gmm__E(IJHQ L ES(EJQQ(|+1 <[ 1 (L +1)+1, (1, +1) =1, (1, +1) ngml
sorla) (L+1) &5 \r 19 ? J

* In matrix form: g =Et+Gs

oY,™ avY,™




Velocity field at CMB

e Define the Elsasser and Gaunt matrices

1(r l+2 1 a l,+2
EMm == | — 21 (L,+1)g™
Il ( j (|1+1)I2,Zmz(rj (2"‘ )glz

Fia

Elsasser
integral

o™ av,™
860 Op

Gmm__E(IJHQ L ES(EJQQ(|+1 <[ 1 (L +1)+1, (1, +1) =1, (1, +1) ngml
sorla) (L+1) &5 \r 19 ? J

* In matrix form: g =Et+Gs

* Final version: Q=(EZG)(EJ

oY,™ avY,™

S



ield at the CMB

ity f

Veloc

1 I N R 1
- - L Y T BT B O O L "o
- e T T ST T B PSR T SR S =
- LI L e LT Y " R
T f;#....x\\il;z-—.—un\f...
S NNNY e mn g g N
L f:f.f....-\\il:ll]pfr/ﬁ..ar.-hhhh.-.h.-.
et Y O IV AV SV ST
- b T T A w1 £ F oo
- L m..__...__u_._
- - Fo s e
- - o F
B - - oS =]
- Sy - o A
- .f/ - =
-~ L P -
” Sm e M My Mmoo
’ [ A
P LI T T T N
) T % %oy oy,
) T34 % vy o
i PRI Vs 0
IR U T B
ﬂﬂﬂ—uhh._.
= LT [ R T TP =
N b T T D
L IS L T T R Y
[ L} <5

i

o - o o=
- = m o=

- = o= o=

" - - o=

. - ==

Velocity map in 7.1940

90
60
30 |
0

.
PN L- - = = - ] = = = = - Y
PR L - - ok omk o= o= o
PRI 1 i ! - P |
[ | 1 0% LY pu— - e o owm om om
b. 11 f,.m....rli_...- [ I |
L} 1 11 w/_r...._rli...._. e |
11 B T T A % tm ot oma om omom
1 _.._.._f.,__..l....__.\ N e TR
L ] LI T T J - i
J.ﬂ ﬂn-..p A - v Ay
LI 1 1rFr 135 . . 4
| 1 1 r yr - N v _
F P r s oar -
I fr .
ALY 1
! & [ ]
- LN |
: o .
- - e w e
P AT N T T TR I B |
Frr o o1 vy v 0w
AP0 v o 00 .
PPl ol 5 I BN B BT PR
| FASATSSSSF LI 0 0 _
o PPN N N A
- - PR S P Y B B B B B R R
- - R R D VLV N Y B Y R e
. - P A B A A R A R )
N - .-..\«..._w.-.......JI._I.\\"\.__.H.\.\\M.___\NN...
- P I T T R A A
= .\\..-.._..._*\O...r_,_{.,_..u..\\\\\\\\\._.\
- Fee P R T
|:.‘.l.w_.\.\..__h.-n_...-.r..-__....a..........._\.._...1.
-l.....l..._“._..\\h..n..__...._...a =y - ._
L L LR TR T T T D T B R ) L
I e P I D N S
o
_Q_u

-30

apnyje

-60 0 60 120 180
Longitude

-120

-180



——— T e

iy S ————— e, T "

il of aa aal i aliiall Ll

I e "

e e e et R R e e e e s o e Y

L T -
T e b
LY {.....wf.flfl —

L {..I_ Py, Sy T T
.\m Ty, iy Sy T B e e Py, e By

e T R e L T T
NN R R e e = - s
R
RSN NN L N
RS SN NN -
SO NN
R T

. F F F & F 5 7 A

180

ield at the CMB

ity T

Veloc

Velocity map in 11.1989

Y

o o e um o

‘_._F.—q-h"h'\\.\
[ T

T
A e

.v"-"-'-'-'r'.u-'-'-'------—--n-h.\.

-l s W s oW

[ bl

—— o s
b o

._ml_l_
_.. ” H - --.F.f-).‘-'-lll
'.r L L N L T L I ]

hL‘ A N S e e e
-_.—.......r - tff.J._J..—. L\.\\.\\I\Il_f‘_.r:z{ffll
._r. f!jf.._r‘. \.\\l\ll:zzzziffll

s NS .\\.\._..\.l.ll..._:.....r:_...._l.l_l_
#...—)_.(.__./_.f-.. B S o o e i m ow e - m

F A T
1 5 A Tl

e R E A
R ol i ol ol
PRI R

o A
Pl
L e ey
e
- ._.l\_.r-..-l...l_..\
LR T e
g g
- gl
[e——————
Y g, il =P
- —m =
.y ey Rl e o=

- =

-
N
-

L A S R A B B 1
(3N
[
11

.
LU T T T T T T T I )
T T Y YL
| A T T T T R T T B |

T WL R OT OV OLL

FLE LYY Y YYTYSIOCY LR

S N A L T e T T T T T T TR T T R

llllll

IIIIIII -
L R,

T A o o oy m

120

60

-60

-120

Longitude

o T
1 I e
B g
I e
' ' ;ul.-.-ll-l-_.lul.l-l\l-.ll-tuillulu . L

. A

P -
ey
-.1\.-.1._.1.Illl._r..!-lllrl.r L
e e e el Yy, 7,

-

L S S A A R S A D B B R O R

bl

- - — P R N i R “
- Y PP
L] e l.kk\\\\\\\\.\\-‘.\-!\-lllllllf.lrl "
e = Iilﬁlikl,a\\\\\\\\\hilil .
T P IF I R Al ot o S NN
. ’ [P A A W
[ "

¥ b

.

90

60

apnyiye]

-180



Further specifications

e Gated Recurrent Units (GRU) is like Long-Short Term Memory (LSTM),
but with fewer parameters.

* GRU reported to perform better than LSTM for small datasets (Chung
et al. 2014; arXiv:1412.3555)

 Since the dataset used (1935-1989) is small, we chose to use GRU

* The effect of the size is ‘indirectly’ observed in the dependency of
performance of the neural network on train-test split value [0.75-0.9]

* A split rate smaller than 90% decreases the performance considerably
* The data set is normalized (largest speed is 1)


https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1412.3555

Prediction using RNN

* We use the values of the velocities of 5 regions (1 centrally located at
(40 N, 130 W) and 4 neighbouring sites)

* We used data from 1935 until 1990
* Higher reliability in the latter years

e Recurrent neural network is used to predict “2 vectors” (sequences)
after learning from 10 input vectors

0,V ¢

e Used: Tensorflow, Keras

1— [
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Time dependence of velocity components in
the selected domain

We observe a variance of the 2 components of the velocities for 5 neighbouring sites (Training
series spanning the last 10 years)
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The variations on the point in the map are shown in solid green line



Predictions for the central point (temporal approach)
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Predicting future values of vy & v, for the spatial

approach
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Conclusions

* We observed that the time approach offers a very reliable method on how
to possibly predict the velocity field components for a given point at CMB

* We observed a good performance in determining two components of the

velocity using RNN based on previous values of the region and 4
neighbouring sites

e (Future work) Will use larger neighbouring regions around a site of interest
e (Future work) Will use a larger dataset (initial year < 1930)
e (Future work) We will extend the dataset with “predictions” beyond 1990

e (Future work) Will construct a model that provides a more realistic velocity
field at CMB
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