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Geomagnetic field applications

• Background

• Let discuss two typical examples involving:
• Time series

• Flow patterns

• Don’t worry about the physical and mathematical details because you 
can apply the same approaches on a multitude of systems!



Background

• The Earth’s main magnetic field is generated and 
maintained against Ohmic loss by dynamo mechanism. 
This mechanism takes place in the outer core. One of 
the main equation

where the magnetic diffusivity                ,     is electrical

conductivity

• The geomagnetic field exhibits temporal variation on 
different timescales: from fraction of a second to 
millions of years. 
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Source term Dissipative term
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Time series (4 Myr time series)

• 4 Myr long series of palaeomagnetic dipolar moment estimations (4.2566 Myr
precisely)

• This series is constructed by analyzing samples drilled from the floor of the Indian 
Ocean (Meynadier et al., 1994)

• During this time interval, have occurred several inversions of the dipolar 
geomagnetic field

a
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Time series (4 Myr time series)

• 4 Myr long series of palaeomagnetic dipolar moment estimations (4.2566 Myr
precisely)

• This series is constructed by analyzing samples drilled from the floor of the Indian 
Ocean (Meynadier et al., 1994)

• During this time interval, have occurred several inversions of the dipolar 
geomagnetic field

• The actual series contains relative palaeo-intensity (RPI) data
• They can be converted  into absolute palaeo-intensity (API) data through a 

simple multiplicative gauging that does not affect the statistical properties 
of the series

• The data are not evenly spaced time-wise and the average timestep is 
approximately 2 kyr

• The whole series contains 2160 entries



Recursive Neural Network (RNN)
• A new deep learning paradigm is gaining more and more acknowledgment: 

Recursive Neural Network (RNN) (Chinea, 2009)

• Recursive Neural Networks are non-linear adaptive models that can learn deep 
structured information

• There is some concern in broadly accepting them:
 Inherent complexity
 Computationally expensive learning phase

• Recently more extensively applied in economics (Moghar and Hamiche, 2020), 
ecological systems (Chen et al., 2018), weather forecasting (Singh et al., 2019), 
hydrology (Jia et al., 2018)



Motivation

• Construct a Recursive Neural Network (RNN) that can analyze the actual 
time series 

• Analyze
 Dipolar moment magnitude (positive values)

 Dipolar moment polarity

• Extend the prediction beyond the actual time series (future objective)



Motivation and procedure

• Construct a Recursive Neural Network (RNN) that can analyze the actual 
time series 

• Analyze
 Dipolar moment magnitude (positive values)

 Dipolar moment polarity

• Extend the prediction beyond the actual time series (future objective)

• Train the RNN with a part of the 4 Myr time series

• Afterwards the RNN will provide a prediction that will be compared with 
the remaining chunk of the original series (validation series)

• Analyze the statistical properties of the predicted and validation series



Building and Training the RNN

• The proposed LSTM architecture

• LSTM: Long Short-Term Memory (Learn from sequences of 
observations and well suited for time series forecasting)

• 4 Layers of LSTM

• Each layer has 50 neurons

• Dropout is 0.2 (to avoid over-fitting!)

• Output layer, DENSE, has only 1 neuron

Dropout Dropout Dropout Dropout
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Building and Training the RNN

• LSTM architecture implementation with Tensorflow and Keras API



Building and Training the RNN



Testing the RNN



Testing the RNN

Each prediction is obtained 
by the RNN by using 60 
precedent entries



Training and Prediction

Last 850 entries



Statistical Properties (to analyze the predicted series)

• The predicted and original time series look very alike. How certain can 
we be about it?

• Power Spectral Density (PSD): distribution of average power against 
frequency for the predicted and validation time series

• This graph provides valuable information about the statistical 
properties of e given time series (not the only one)



Power Spectral Density (PSD)

PSD of the predicted seriesPSD of the validation data series



Training and Prediction (polarity considered)



PSD (polarity considered)
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Velocity field at CMB

• The fluid in the outer core and CMB is considered to be and ideal 
conductor
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• The fluid in the outer core and CMB is considered to be and ideal 
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Velocity field at CMB

• The fluid in the outer core and CMB is considered to be and ideal 
conductor

• The fluid flow is two-dimensional (vr = 0)
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Velocity field at CMB

• The fluid in the outer core and CMB is considered to be and ideal 
conductor

• The fluid flow is two-dimensional (vr = 0)

• There is only one equation, hence there is inherent non-uniqueness
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Velocity field at CMB

• The fluid in the outer core and CMB is considered to be and ideal 
conductor

• The fluid flow is two-dimensional (vr = 0)

• There is only one equation, hence there is inherent non-uniqueness

• Constraints can be applied on the fluid motion (we apply none!)

 B
v B

t


 





Velocity field at CMB

• Only the radial component of the magnetic field is continuous through the 
CMB!

• Radial induction equation

• Nabla expanded:

• The divergence yields:
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Velocity field at CMB

• Only the radial component of the magnetic field is continuous through the 
CMB!

• Radial induction equation

• Nabla expanded:

• The divergence yields:
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We work  with 
this equation



Velocity field at CMB

• The velocity is separated into a toroidal and poloidal constituent 
(Backus, 1986):

• Total velocity

• After substitution
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Velocity field at CMB

• The velocity is separated into a toroidal and poloidal constituent 
(Backus, 1986)

• Total velocity

• After substitution 2 2
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Velocity field at CMB

• In spherical harmonics with complex coefficients

• The coefficients t and s are unknown
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Velocity field at CMB
• Substitution into the radial induction equation

• Integration over the CMB (Whaler, 1986)
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Velocity field at CMB
• Substitution into the radial induction equation

• Integration over the CMB
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Velocity field at CMB

• Define the Elsasser and Gaunt matrices
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Velocity field at CMB

• Define the Elsasser and Gaunt matrices
Elsasser
integral

Gaunt 
integral

 
 

3 31 2 2 2

3 32 21 3 2 1

1 3 2 1

2 2

2 2

2

,1

1 1
1

1

m ml l m m

l ll lm m m m

l l l l

l m

Y YY Yr a
E l g Y d

r a l r    

 



      
                   

 

 
       

1 2

1 3 32 1 2

1 3 2 1 2 3

2 2

2 2

2 1 1 3 3 2 2

,1

2 1
1 1 1 1

1

l l

m m mm m m

l l l l l l

l m

r a
G l g l l l l l l Y Y Y d

r a l r

 



   
                 

 



Velocity field at CMB

• Define the Elsasser and Gaunt matrices

• In matrix form:  g Et Gs
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Velocity field at CMB

• Define the Elsasser and Gaunt matrices

• In matrix form:

• Final version:  :
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Further specifications

• Gated Recurrent Units (GRU) is like Long-Short Term Memory (LSTM), 
but with fewer parameters.

• GRU reported to perform better than LSTM for small datasets (Chung 
et al. 2014; arXiv:1412.3555) 

• Since the dataset used (1935-1989) is small, we chose to use GRU

• The effect of the size is ‘indirectly’ observed in the dependency of 
performance of the neural network on train-test split value [0.75-0.9]

• A split rate smaller than 90% decreases the performance considerably

• The data set is normalized (largest speed is 1)

https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1412.3555


Prediction using RNN 
• We use the values of the velocities of 5 regions (1 centrally located at 

(40 N, 130 W) and 4 neighbouring sites)

• We used data from 1935 until 1990
• Higher reliability in the latter years

• Recurrent neural network is used to predict “2 vectors” (sequences) 
after learning from 10 input vectors

• Used: Tensorflow, Keras

V_,V_f

V_,V_f V_,V_f

V_,V_f

V_,V_f V_,V_f



Time dependence of velocity components in 
the selected domain

v vf

We observe a variance of the 2 components of the velocities for 5 neighbouring sites (Training 
series spanning the last 10 years)

1984         1985        1986         1987         1988         1989  1984         1985        1986          1987         1988         1989  

The variations on the point in the map are shown in solid green line



Predictions for the central point (temporal approach)

This approach focuses on the time series constructed 
for each component in a defined observation point. 
Each training series contains 60–120 entries.

Month #1984                                            1985                                                  1986                   1987                                            1988

v_
th

et
a

1984           1985         1986          1987          1988          1989  



Predictions for the central point (temporal approach)

Month #1984                                            1985                                                  1986                   1987                                            1988

Month #
1984                                            1985                                                  1986                   1987                                            1988



Predicting future values of v & vf for the spatial 
approach

Train 80% Train 92%We consider 10 input vectors altogether!



Conclusions

• We observed that the time approach offers a very reliable method on how 
to possibly predict the velocity field components for a given point at CMB

• We observed a good performance in determining two components of the 
velocity using RNN based on previous values of the region and 4 
neighbouring sites

• (Future work) Will use larger neighbouring regions around a site of interest

• (Future work) Will use a larger dataset (initial year < 1930)

• (Future work) We will extend the dataset with “predictions” beyond 1990

• (Future work) Will construct a model that provides a more realistic velocity 
field at CMB
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