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The activity here is aimed at those with little, or even less, experience of ML; to have them acquire 
enough tools, in the form of an understood running code example and pointers on how to continue, so 
that they are comfortable and motivated to do so.  We have 3 hours.

Why ML? - because ML can help generate new scientific insights by uncovering connections in a mass 
of data.   Just one quick example (from  https://predictioncenter.org/casp14/zscores_final.cgi  )
AlphaFold’s correct reconstructions of protein 3-D configurations using ML.



But undetected errors can occur (from   arxiv.org/pdf/1808.03305.pdf ; “The Elephant in the Room”
Amir Rosenfeld et al.   )  where a very large animal is not detected by the state-of-the-art image ML

Given that ML’s are fallible, it is   very, very, very, very   important to certify your finished ML by
(at the beginning) creating a “holdback” or “test” dataset which is distinct from the training dataset, and
which is “touched” only once at the end of development.  This is the one method which can provide an 
independent measure of the reliability of your ML.

Why ML now? …. machines which learn have been explored for >50 years.  Why now?

The simple answer:    CHEAP  GPU’s

Many ML algorithms can be parallelized or require lots of dot products (matrix multiplications).  
GPU’s  are stripped down CPU’s to do just that.  As a GPU is much less capable than a CPU it can be 
made much more simply and can be packed tightly onto a chip and thousands can be run in parallel.



ML will continue to expand as cost/performance declines ( from   aiimpacts.org/2019-recent-trends-in-
gpu-price-per-flops/  ;  Figure 2  )  by a factor of ten during a decade. 

From www.jetpress.org/volume1/moravec.htm, “When will computer hardware 
match the human brain?”, Hans Moravec,  Carnegie Mellon University. 

http://www.jetpress.org/volume1/moravec.htm


Today’s Procedure 

Start with neural nets, then XGB if enough time.

But first, there are two major categories of ML:  supervised & unsupervised.  In the first, we give the 
machine examples of data to classify and the correct answers which the machine uses to train.  In the 
second, no answers.   Also, ML’s  are used to classify examples and to regress (fit, as in non-linear 
regression).  We will streamline by referring to “classifiers”.

Today we deal only with supervised classification.   

There are many types of NN’s:



from  www.asimovinstitute.org/neural-network-zoo/

We will use saturated, feed-forward networks like this:

In this cartoon of a NN the flow of information starts at the inputs x1 & x2 from which the information 
is sent to the “hidden layer” (so called because not exposed to outside) where the sums over indices i 
and j are done, followed by the sum over the non-linear “activation function” tanh(.) and offset b.  But 
for the tanh this would be a linear function.  Note that most of the computation are dot products.  The 
f(x,w) is a regression result which we convert to a “probability” using the logistic function n(.). 

The cartoon shows a single hidden layer. A NN with more than one hidden layer is called “deep”.

Given a NN,  defined by its weights uij, aj, vj and b the calculation of its opinion wrt the features 
presented at xi , is very fast.   This is called a “forward pass”.

Most of ML is concerned with how to find the weights such that your NN produces 
accurate opinions.

There is a training procedure which finds useful weights; it essentially computes weights such that the 
Loss is minimized.  Given a net with some (perhaps random) weights do:

1) Input a training example (“event” in HEP) into the x layer, one feature per input node.
2) Compute the NN’s opinion (e.g. do a forward pass) f(x, w).
3) Compute the error (Loss) L = (f(x,w) – label)2

4) Compute the derivatives (matrix of partials) of dL/dw
5) Change each weight wi 

NEXT
 <== wi – η ∂L/∂wi  ; where  η (the “learning rate”) is small ~0.01 ... 0.001

6) Go to 1), or stop if happy with size of error (Loss).

This procedure can be made to be computationally efficient for even multi-layer NN ( google 
“backpropagation”).

http://www.asimovinstitute.org/neural-network-zoo/


Overtraining, generalization, OOB error, …

It is the case that many (most) classifiers if trained long enough can learn the training set perfectly,
but when presented with a new (not from training set, aka Out Of Bag) instance will do poorly.  This 
situation is called “overtraining”.  

Most of your effort will be intended to increase the generalization ability of your classifier. 

Some common terms

Forward pass:  one example is passed through the network the error of the output layer is computed.

Backward pass:  update the weights (credit assignment) based on the error hidden nodes are linked to 
the error not directly but by means of the nodes of the next layer.  Starting at the output layer, the error 
is propagated backwards through the network, layer by layer.  This is done by recursively computing 
the local gradient of each neuron.

Epoch: application of the update rule to all examples of the training set. Execution of the learning 
algorithm terminates when the weights do not change after one epoch.

Weight seeding: weights should be initialized seeded with small random weights.

Stochastic gradient descent:  one or few randomly picked instances for weights update.

Minibatch:  update weights after processing small, random batches of instances.

Loss function:  some convenient function of the error between label and NN’s opinion (output).

Hyperparameters: Learning rate, momentum, batch size, number of epochs, number of hidden layers 
and units, dropout fraction.     Use what works! Optimise with grid or random search. 

Overfitting (overtraining):  Avoid overfitting & check w. validation set.   Leave “test”; “holdback”   
set unsullied for final measurement of generalization level. 

Crossvalidation: Set aside a fraction of the training data to use avalidation; repeat with randomly 
selected instances. (to measure NN quality)

Dropout: Randomly drop connections between nodes of NN. (improve generalization)

Data prep:  It has been found that ANN’s do better if the input data is “normalized”, e.g. the training 
set is scaled such that the mean is 0 and 1 standard deviation width.  Each input variable must be 
idependently normalized.   For test data the inputs must use the same scaling as the training dataset.  
How does this impact your data prep?



Activation function:  ANN’s usually converge faster with ReLU than tanh; especially multi-layer 
ANN’s. 

We’ll use Scikit-learn because it has decent defaults.  For more flexibility one can later use Keras, 
pyTorch, TMVA, R,….

Here are the first five columns of the first 2 lines of the training dataset of ~24,000 instances:

0  1  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 <<== column #

1.0000000      -0.2753248 0.0579663 0.4022882 -0.2108261 0.7982173 …. <<==first feature line

0.0000000      0.3018720 -0.7348565 -1.4450299 0.6842730 -1.2888023 …. <<== second feature line



    ^^^^^               ^^^ features (23 cols of features)
  class  label    (just two labels 0 or 1)        

These data have already been “standardized” by transforming to mean and standard deviation.


