BataAnalvsis: Machine Learnine Teehni

Toe In Water
..... should be thought of as “put a toe in the bath water”

Kaurtis F. Johnson, Florida State University & University Bari
17 June 2022

Tirana School for Data Science, Particle & Astroparticle Physics

The activity here is aimed at those with little, or even less, experience of ML; to have them acquire
enough tools, in the form of an understood running code example and pointers on how to continue, so
that they are comfortable and motivated to do so. We have 3 hours.

Why ML? - because ML can help generate new scientific insights by uncovering connections in a mass
of data. Just one quick example (from https://predictioncenter.org/casp14/zscores_final.cgi)
AlphaFold’s correct reconstructions of protein 3-D configurations using ML.

240
220
200
180

160

=)
= 140
A
bl
S
2 120
3
s
@ 100

80

60

40

20

A N
IR
SLELLC
1
o GR «GR D aaa C Nt aSUM Zscore « Rank SUM Zscore
Y code ¥ name v T (»-2.0) ¥ (»-2.0)
1 427 AlphaFold2 92 2440217 1

2 473 BAKER 92 90.8241 2

B

But undetected errors can occur (from arxiv.org/pdf/1808.03305.pdf ; “The Elephant in the Room’
Amir Rosenfeld et al.) where a very large animal is not detected by the state-of-the-art image ML

(g)

Fig. 1: Detecting an elephant in a room. A state-of-the-art object detector detects multiple images in a living-room (a). A
transplanted object (elephant) can remain undetected in many situations and arbitrary locations (b.d,e,g,i). It can assume
incorrect identities such as a chair (f). The object has a non-local effect, causing other objects to disappear (cup, d.f, book,
e-i) or switch identity (chair switches to couch in e). It is recommended to view this image in color online.

Given that ML’s are fallible, it is very, ,very,Very important to certify your finished ML by

(at the beginning) creating a “holdback™ or “test” dataset which is distinct from the training dataset, and
which is “touched” only once at the end of development. This is the one method which can provide an
independent measure of the reliability of your ML.

Why ML now? machines which learn have been explored for >50 years. Why now?
The simple answer: CHEAP GPU’s
Many ML algorithms can be parallelized or require lots of dot products (matrix multiplications).

GPU’s are stripped down CPU’s to do just that. As a GPU is much less capable than a CPU it can be
made much more simply and can be packed tightly onto a chip and thousands can be run in parallel.

ML will continue to expand as cost/performance declines (from aiimpacts.org/2019-recent-trends-in-
gpu-price-per-flops/ ; Figure 2) by a factor of ten during a decade.

GPU release sale price / SP FLOPS minimums over time

1.00E-08
W
1.00E-09
——
k4
s
1.00E-10 M
E___ 3
===
1.00E-11

2008 2009 2070 20711 2012 2013 2074 2015 2016 2017 20718 2019 2020

Figure 2: Ten-day minimums in real GPU price f single-precision FLOPS over
time. The vertical axis is log-scale. Price is measured in 2019 dollars. The blue
line shows the trendline ignoring data before late 2007. (We believe the
apparent steep decline prior to late 2007 is an artefact of a lack of data for
that time period.)

From www.jetpress.org/volumel/moravec.htm, “When will computer hardware
match the human brain?”, Hans Moravec, Carnegie Mellon University.

Evolution of C()mpu ter Pi)\'\’ererO.‘it Brain Power Equivalent per $1000 of Computer ,
Human , 4 ;“
i
MIPS per $1000 (1997 Dollars) o -4
Ménkey ¥3
Million)
e W,
Mouse o

Lizard
1000 Gateway (6-200
Powerkac 8100/80

 §

Gateway-4850 X266 Spider

Mac 1l
Powsr Tower 1808

3

Macintosh- 128K
ATAT Globalyst 800

— Nematode
1BM PS/2 80 Worm

1 Commodora &4

s

Mac 1t
Sun-3
DEC PDP-10
1 BN 7080 1BM 1130 *. Vax 11/750 i
1000 ° Bacterium [)
00 Whirwing ’ ° DEC VAX 11/780
B T04 L DEC-KL-10
® o L]
UNIVAC |
ENIAC

1 - ®e
Colossus
= L/ °
Willion S §
Burmoughs Ciass 15 / ° 18M 650 Manual %‘
i o Calculation

.
1 BM Tabulator - ﬁ_w . "'..
Billion Monros Calculstor { L ® .'a:m' ek 1)
T
° T /"
1900 1920 1940 1960 1980 2000 2020 Year

Faster than Exponential Growth in Computing Power. The number of MIPS in $1000 of computer from 1900 to the present.
Steady improvements in mechanical and electromechanical calculators before World War |l had increased the speed of calculation
a thousandfold over manual methods from 1900 to 1940. The pace quickened with the appearance of electronic computers during
the war, and 1940 to 1980 saw a millionfold increase. The pace has been even quicker since then, a pace which would make
humanlike robots possible before the middle of the next century. The vertical scale is logarithmic, the major divisions represent
thousandfold increases in computer performance. Exponential growth would show as a straight line, the upward curve indicates
faster than exponential growth, or, equivalently, an accelerating rate of innovation. The reduced spread of the data in the 1990s is
probably the result of intensified competition: underperforming machines are more rapidly squeezed out. The numerical data for
this power curve are presented in the appendix.

http://www.jetpress.org/volume1/moravec.htm

Today’s Procedure

Start with neural nets, then XGB if enough time.

But first, there are two major categories

of ML: supervised & unsupervised. In the first, we give the
machine examples of data to classify and the correct answers which the machine uses to train. In the
second, no answers. Also, ML’s are used to classify examples and to regress (fit, as in non-linear

regression). We will streamline by referring to “classifiers”.

Today we deal only with supervised classification.

There are many types of NN’s:

) input Cel

O Backled ingut Cel

B nashy e Cell

W recden el

D Peobatiiitic iedden Cell
@ seuing osen i
@ caousecel

@ osptca

B anch et Onept Col

) Recument ceil

A mostly complebe chart of

Neural Networks .-

Feed Fonward (DFF)
DS Fioder wih Wit & Shifln Loty dmciilitule. &)
Peroeptron (7 Feod Forward (FF) Reacilal Bueths Metwark (REF) "

Riegur ik Parl Mebweork RMR) Leng Shaet Tefm Memory (USTa) Cibed Redursent sk JGRU}

st Encode (8E) vaational AE(GAE] Dieroiing AF 0AE) Sparse AF (RAR)
@ verorycn
) catedmemory ceil
N Bermed

i Chain [MIC) Hophield Metwork (HN) Boltrmann Maching (BM) ReLtTicted BM RENY Deep Bebed Network (DEN]
o =
010 0. 0

T Tt e

Do Cormvobatinnal Netweri (D)

Caprwtrithve Acheeriarial Nebwork iGand

sl N o
Jeieineie

il S St

_|><|§<|§(|><;|:

Decormpdotinnal Metwork (DN Dewn Commolgional irmprin Cragphics Metwork (DOGH)

Pe_ S0, o,
o e o A
Z T o

Licpoke] Stabe Machioe U580 Extreme Leining Machine (ELM] Echa State Petwork [E5H)

Hangrd Turieg Muching [T
Adbenion Metwork [434)

The Neural Network Zoo (download or get the poster).

from www.asimovinstitute.org/neural-network-zoo/

We will use saturated, feed-forward networks like this:

H P
f(x,w)=0>b +Z v, tanh|:a_f. + z au.x!}
J=1 i=1

1
n(x,w

a
o\\)= 1+exp[-f(x,w)]
)

l . \\\\
e - .T\\

In this cartoon of a NN the flow of information starts at the inputs x1 & x2 from which the information
is sent to the “hidden layer” (so called because not exposed to outside) where the sums over indices i
and j are done, followed by the sum over the non-linear “activation function” tanh(.) and offset b. But
for the tanh this would be a linear function. Note that most of the computation are dot products. The
f(x,w) is a regression result which we convert to a “probability” using the logistic function n(.).

The cartoon shows a single hidden layer. A NN with more than one hidden layer is called “deep”.

Given a NN, defined by its weights uj;, a;, v; and b the calculation of its opinion wrt the features
presented at x; , is very fast. This is called a “forward pass”.

Most of ML is concerned with how to find the weights such that your NN produces
accurate opinions.

There is a training procedure which finds useful weights; it essentially computes weights such that the
Loss is minimized. Given a net with some (perhaps random) weights do:

1) Input a training example (“event” in HEP) into the x layer, one feature per input node.

2) Compute the NN’s opinion (e.g. do a forward pass) f(x, w).

3) Compute the error (Loss) L = (f(x,w) — label)?

4) Compute the derivatives (matrix of partials) of dL/dw

5) Change each weight w; "**' <== w; — n dL/0w; ; where 1 (the “learning rate”) is small ~0.01 ... 0.001
6) Go to 1), or stop if happy with size of error (Loss).

This procedure can be made to be computationally efficient for even multi-layer NN (google
“backpropagation”).

http://www.asimovinstitute.org/neural-network-zoo/

Overtraining, generalization, OOB error, ...

It is the case that many (most) classifiers if trained long enough can learn the training set perfectly,
but when presented with a new (not from training set, aka Out Of Bag) instance will do poorly. This
situation is called “overtraining”.

Most of your effort will be intended to increase the generalization ability of your classifier.

Some common terms
Forward pass: one example is passed through the network the error of the output layer is computed.

Backward pass: update the weights (credit assignment) based on the error hidden nodes are linked to
the error not directly but by means of the nodes of the next layer. Starting at the output layer, the error
is propagated backwards through the network, layer by layer. This is done by recursively computing
the local gradient of each neuron.

Epoch: application of the update rule to all examples of the training set. Execution of the learning
algorithm terminates when the weights do not change after one epoch.

Weight seeding: weights should be initialized seeded with small random weights.

Stochastic gradient descent: one or few randomly picked instances for weights update.
Minibatch: update weights after processing small, random batches of instances.

Loss function: some convenient function of the error between label and NN’s opinion (output).

Hyperparameters: Learning rate, momentum, batch size, number of epochs, number of hidden layers
and units, dropout fraction. ~ Use what works! Optimise with grid or random search.

Overfitting (overtraining): Avoid overfitting & check w. validation set. Leave “test”; “holdback”
set unsullied for final measurement of generalization level.

Crossvalidation: Set aside a fraction of the training data to use avalidation; repeat with randomly
selected instances. (to measure NN quality)

Dropout: Randomly drop connections between nodes of NN. (improve generalization)

Data prep: It has been found that ANN’s do better if the input data is “normalized”, e.g. the training
set is scaled such that the mean is 0 and 1 standard deviation width. Each input variable must be
idependently normalized. For test data the inputs must use the same scaling as the training dataset.
How does this impact your data prep?

Activation function: ANN’s usually converge faster with ReL U than tanh; especially multi-layer
ANN’s.

Order of
Name 3 Plot Function, f(z) + Derivative of f, f'(z) % Range % continuity
Identity / - 1 (=00, 00} o=
. 0 ifz<0 0 ifa#0)
Binary stcp | { 1 ifz>0 { undefined ifx =0 {0, 1} (0.
Logistic, sigmoid. or soft step maE alx) = 1ter i Flz)(1— flz)) 0,1) c=
Hyperbolic tangent {tanh) /, tanh{z) = E’T—er 1- flz)* (-1,1) o=
- (5 e
0 ifxr<o 0 ifz<0
Rectified linear unit (ReLU)!9] z ifz>=0 1 ifa =0 [0, 56) c*
= max{0,z} = zl,- undefined ifz=10
1 -
;.(l -vrf({_)) .
Gaussian Error Linear Unit [GELU)!! 2 V2 B(e) + adiz) (=0.17...,00) | O™
| = zd(z)
e
. 1P 1
Softplus10 In(1 + &) == (0,5¢) =
— (3
{n[c’—l) ifz<0 a® ifx<0 .
Exponential linear unit (ELU)I1Y Z ifz >0 1 ifz>0 {—ax, 00} { gﬁ Iftﬁ - l
with parameter a 1 ifr—0anda =1 otherwise
A{ alef =1} ifx <0
x ifx =0 o
i i 2] ae® ifx < 0 . 0
Scaled exponential linear unit {SELU) with parameters A = 1.0507 and 5\{ 1 ifz >0 [—Aex, 50) C
a = 167326
3 0.01x ife<0 0.01 ifx<0
i i i [13] . 0
Leaky rectified linear unit (Leaky RelLU)’ {I ifz>0 { 1 ifz >0 {—o00, 00} C
{(u: ifz <0
Parameteric rectified linear unit (PReLU)14! z ifz20 {‘]l 1?4- ‘; 4{;; (—o0,00) 2 o
with parameter o tr=2
Sign;‘;id Iinearunitlt?ii_u,:"” Sigmoid shrinkage,[15] & 1+e™ + zj" [0278...,00) | &
SiLI16] or Swish-1117]) 14e® (1+e-=)

) *(4e® + &3 + A1 + &) + e (6 + 4
Mish 1181 rtanh(ln(l + 7)) (P + ¥ + Al v o) + O+ dD)) || g o) |0

(2 + 2¢7 + et)?

Gaussian DAL = —2ze (0.1) c

We’ll use Scikit-learn because it has decent defaults. For more flexibility one can later use Keras,
pyTorch, TMVA, R,....

Here are the first five columns of the first 2 lines of the training dataset of ~24,000 instances:
01234567891011121314151617 1819 20 21 22 23 <<== column #
1.0000000 -0.2753248 0.0579663 0.4022882 -0.2108261 0.7982173 <<==first feature line

0.0000000 0.3018720 -0.7348565 -1.4450299 0.6842730 -1.2888023 <<== second feature line

ANAAA A features (23 cols of features)
class label (just two labels 0 or 1)

These data have already been “standardized” by transforming to mean and standard deviation.

