

素粒子物理国際研究センター 寺師弘二

ATLAS実験 学部生向け特別セミナ-2022年5月30日

<u>quantum-icepp.jp</u>

ICEPP is exploring Quantum Computing and Sensing technologies, aiming to advance our understanding in fundamental science including high-energy physics at colliders.

なぜ量子コンピュータを考えるのか?

素粒子・宇宙(基礎物理)への量子コンピューティングの応用

- ▶素粒子と量子には、潜在的に親和性がある
- ビッグデータを使うので、計算機科学はとても大事

なぜ量子コンピュータを考えるのか?

量子コンピューティングの進展は目覚ましい ► NISQを活用できる可能性が 高まっている ▶特に「量子機械学習」が大 きく進化してきた

NISQ = Noisy Intermediate Scale Quantum

量子回路モデルの量子コンピュータ

- ▶ 量子ゲート(=ユニタリー演算)を組み合わせて「量子回路」を作る
- ▶原理的にはユニバーサルな計算が可能

▶回路からの出力状態を測定し、結果を得る(→得られるのは古典ビット列)

|0>と|1>の任意の重ね合わせ 状態を表現可能 α $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$

大きさ~

10⁻¹⁰ m

量子コンピュータはどう動くのか?

2つの例を考えてみたい

データから新現象(例えば超対 称性粒子の生成)を見つけ出す

7

機械学習 = 「与えられたデータを学習し、予測を返す機械」

主に3つのタイプの機械学習が知られているが、 教師あり学習と教師なし学習を考えてみる

教師あり学習

量子コンピュータ+AI = 量子AI

- ► **DNN** : Dense, 2-6 hidden layers, 16-256 nodes, RELU, Adam, $\varepsilon_{\text{learning}}=0.001$

▶量子機械学習の性能はデータサイズに強くは依存しない ▶少ないパラメータでも効率の良い学習ができる可能性

通常の古典計算に対して、NISQが優位になる可能性 → 量子データの学習

量子ダイナミクスシミュレーション+機械学習

場の量子論(1次元QED模型)の物理的性質を 機械学習で引き出す

トポロジカル項による相転移を識別できるか? ▶フェルミオン場の量子状態 $\{|\psi^{(i)}\rangle\}$ をデータとして準備 ▶ 量子AIを使って、その状態が属する相を見つける ➡ 古典計算に対する計算量/精度の優位性?

update weights w

次世代の超伝導量子ビットとマイクロ波パルス実装技術の開発

▶ 高準位素子(量子トリット)の研究

IBMとの共同研究

トフォリゲートの量子トリット実装

ICEPPでの量子コンピュータ教育

研究を始めるための教育環境も充実

量子ネイティブ育成センター

理学部1号館10階

興味のある方は、ワークブックを使ってIBM実機で遊んでみてください

IBM量子コンピュータの実機を使った 実習を行なっています 後期学部生向け実習講座 (Sセメスター)

ICEPPのATLAS実験グループでは、量子コンピュータの研究開発と素粒子物理への 応用に取り組んでいます。 **Charged Particle Tracking**

2つの応用例を紹介 ▶ 量子機械学習のデータ解析への応用 ▶ 量子データ学習による量子場特性の 高精度(?)計算

他にも面白いテーマはたくさんあります。

- ▶ 散乱過程の量子ダイナミクスシミュレーション ➡ 事象生成?
- ▶ 検出器データの再構成(例えば荷電粒子の飛跡)
- ►量子アルゴリズムの最適化、量子ソフトウェア

量子情報と素粒子物理が クロスする新しい分野です。 挑戦してみたい方、大歓迎!!

バックアップ

21

東京大学ICEPPの取り組み

量子アルゴリズム

- パルス制御によるカスタムゲート
- ▶ 擬似量子メモリ

量子AIを使って古典を越える?

<u>quantum-icepp.jp</u>

