THE ATF IP-BSM SYSTEM

Alexander S. Aryshev, Ph.D.

Associate Professor

KEK: High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Ibaraki-ken, Japan. TEL: +81-298-64-5715, FAX: +81-298-64-0321. e-mail: alar@post.kek.jp

> CLIC Project Meeting #42 12 May 2022.

Outline

- ATF IPBSM overview
- Various quality degrading effects explanation
- ATF IPBSM improvements since 2020
- Recent results
- Summary and plans

12 May, 2022

Spectra-Physics Quanta-Ray PRO 350

Right now it is discontinued

Company specs:

- Type: Nd:YAG Q-switched
- E_{532nm} = **1.4 J** +/- 3%
- Pulse = 8ns +/- <0.5ns (FWHM)</p>
- Rep. rate = 6.24 Hz
- M2 ~ 1.8 2.2 (vs tuning)

Requires regular actions:

- Cleaning
- Tuning
- Flash lamps replacement

IP-BSM overview (recent details)

12 May, 2022

Laser beam misalignment effects

Laser beam jitter effect

Change in input beam angle (left-hand side in the Vtable plane) leads to:

- Opposite laser beams displacement
- i.e. increasing of the crossing angle
- i.e. shifting of the IP
- i.e. changing of the delay between upper and lower path

Improvements since 2020

- Laser table support
 - Partially rebuilt
 - Insulated (better temp.- & vibro- insulation)
- Laser table enclosure
 - Totally rebuilt (better temp.- & vibro- insulation)
- Laser transport line: MT2, MT3
 - Total rebuilt (fixed mirror holders, solid frame)
- Expander-reducer
 - A new alignment procedure is established (back-reflectors, Shearing interferometer)
 - Expansion/reduction factors were optimized
- Vtable input periscope: M4, M8, M9
 - Mirror support was totally rebuilt
- Vtable
 - Solid laser beam references
 - New alignment protocol (back-reflectors)
 - Laser position sensors
 - Laser profile CCD camera

IP-BSM overview (recent details)

Laser beam profile

Laser beam position sensors

- Introduction of the Lateral Effect Position Sensors.
- Monitor shot-by-shot angular jitter at Vtable:
 - PDP90A + KPA101
 - Long cables -> CAMAC ADC
- Correlation was found
- Software event filter under the test

- Signals X,Y depends on laser
 beam position and laser
 intensity.
- Signals SUM depends only on intensity.
- Signal outputs:
 x1,Y1,SUM1; X2,Y2,SUM2
- Calculated values:
 - $X_i norm = X_i / SUM_i$
 - $Y_i norm = Y_i / SUM_i$
 - ThetaX = X_2 norm X_1 norm
 - ThetaY = Y_2 norm Y_1 norm

Laser beam jitter effect

February 2022 (before LTL upgrade)

- A clear correlation of Cherenkov signal with ThetaY was found.
- At the same time there is no correlation with ThetaX and X_i

Now both the tail and the peak spread become significantly smaller due to LTL upgrade

Cherenkov signal

Stability measurements summary

This data measured with CCD cameras

Parameter	June 2020	21 June 2021	25 June 2021	29 Oct. 2021
RMS Pointing stability,	H 39.1 / 7.8	H 26.7 / 4.1	H 22.8 / 1.1	H 13.2 / 0.31
um @ laser table	V 29.2 / 7.3	V 20.0 / 3.5	V 25.8 / 2.3	V 14.3 / 0.54
Beam width stability, um	H 2801 / 9.3	H 3041 / 10.2	H 2968 / 4.28	H 2705 / 9.3
@ laser table	V 3179 / 9.0	V 3322 / 14.4	V 3291 / 15.7	V 3075 / 9.0
RMS Pointing stability,	H 69.1 / 13.0	H 37.6 / 3.9	H 49.0 / 4.7	H 34.4 / 1.27
um @ vertical table	V 63.3 / 10.2	V 86.6 / 9.4	V 78.8 / 9.2	V 50.2 / 4.24
Beam width stability, um	H 2948 / 33.8	H 2273 / 21.8	H 2087 / 21.0	H 2174 / 21.8
@ vertical table	V 3134 / 39.8	V 3003 / 23.2	V 2639 / 29.0	V 3016 / 23.2

Almost 2 times stability improvement is observed

• A new alignment protocol is under development

Stability measurements with LPMs

	Absolute angle, arb.units	rms spread
LPM2	Ynorm	ΔYnorm
Before LTL upgrd	0.030	0.002
After LTL upgrd	0.020	0.002
Laser table insul.	0.0217	0.0004
Laser hut insul.	0.0251	0.0001
MT8 support load	0.0244	0.0011

Typical 30deg. fringe scan

12 May, 2022

Typical 174 deg. fringe scan

What we will do next

WORK

- Energy stability:
 - Pulse-by-pulse normalization will be improved.
- Pointing stability:
 - Studied, understood, improved.
 - mid- and long-term (hours and days) can be corrected by mirrors.
 - On-line position monitoring is established.
 - Simulation of the laser beam propagation to IP still pending.
- LTL and FF tuning
 - New protocol is established
 - Global realignment was done (next week it will be verified with ebeam).
- Laser Mode stability:
 - Laser tuning and thermal stabilization.
- Fringe stability:
 - Will be improved via laser beam jitter reduction.

Thank you for your attention