Studies on efficiency of cuts on Ch.Counters, beam purity, contamination and selection purity – CERN SPS data

Jinky Agarwala

#### Efficiency of

- C1-loose OR C2-loose
- C1-tight OR C2-tight

The two cuts I am using for physics studies



eff X = 
$$\frac{\text{eff (X AND PS > 4.5MIPs)}}{\text{eff (PS > 4.5MIPs)}}$$

Checking compatibility between these two

eff X = 
$$\frac{\text{eff (X AND calo > 0.8*beamE)}}{\text{eff (calo > 0.8*beamE)}}$$

Verifying (for 6, 10, 20, 30, 40, 60 GeV):

eff (C1L OR C2L) = 
$$1 - (1 - eff(C1L)) * (1 - eff(C2L))$$

eff (C1T OR C2T) = 
$$1 - (1 - eff(C1T)) * (1 - eff(C2T))$$

The steps of these studies for 20 GeV

Then plots for 6 to 60 GeV





eff X = 
$$\frac{\text{eff (X AND PS > 4.5MIPs)}}{\text{eff (PS > 4.5MIPs)}}$$

Checking compatibility between these two

eff X = 
$$\frac{\text{eff (X AND calo > 0.8*beamE)}}{\text{eff (calo > 0.8*beamE)}}$$

| 20 GeV             | PS > 4.5MIPs | calo > 0.8*beamE |
|--------------------|--------------|------------------|
| eff (C1L OR C2L) % | 85.5         | 85.3             |
| eff (C1T OR C2T) % | 85.1         | 84.9             |

eff X = 
$$\frac{\text{eff (X AND Y)}}{\text{eff (Y)}}$$

X = C1-loose OR C2-loose/C1-tight OR C2-tight Y = PS>4.5MIPs OR calo>0.8\*E



| 20 GeV             | LHS of the formula | RHS of the formula |
|--------------------|--------------------|--------------------|
| eff (C1L OR C2L) % | 85.5               | 90.5               |
| eff (C1T OR C2T) % | 85.1               | 90.0               |

Verifying (for 6, 10, 20, 30, 40, 60 GeV):

eff (C1L OR C2L) = 
$$1 - (1 - eff(C1L)) * (1 - eff(C2L))$$

eff (C1T OR C2T) = 
$$1 - (1 - eff(C1T)) * (1 - eff(C2T))$$

eff (C1L OR C2L) = 1 - (1 - eff(C1L)) \* (1 - eff(C2L)) eff (C1T OR C2T) = 1 - (1 - eff(C1T)) \* (1 - eff(C2T))

eff X = 
$$\frac{\text{eff (X AND PS > 4.5MIPs)}}{\text{eff (PS > 4.5MIPs)}}$$



#### Measurement of beam purity

Beam purity = 
$$\frac{\text{Nof selected events with Only (X)}}{\text{eff (X)}} * \frac{1}{\text{totEvents}}$$

eff X = 
$$\frac{\text{eff (X AND PS > 4.5MIPs)}}{\text{eff (PS > 4.5MIPs)}}$$
 X = C1-loose OR C2-loose/C1-tight OR C2-tight

## Measurement of beam purity (20 GeV)

| 20 GeV             | totEvenets | Nof e⁻           | Beam purity | Nof muons, | Beam          |
|--------------------|------------|------------------|-------------|------------|---------------|
|                    |            | =                |             | hadrons    | contamination |
| Sel made           |            | $N_{sel}/eff(X)$ |             |            |               |
| with<br>C1L OR C2L | 101191     | 31368            | 31.0%       | 69823      | 69.0%         |

| 20 GeV             | totEvenets | Nof e⁻           | Beam purity | Nof muons, | Beam          |
|--------------------|------------|------------------|-------------|------------|---------------|
|                    |            | =                |             | hadrons    | contamination |
| Sel made           |            | $N_{sel}/eff(X)$ |             |            |               |
| with<br>C1T OR C2T | 101191     | 30743            | 30.4%       | 70448      | 69.6%         |

## Beam Purity as a fn of Energy



#### Measurement of beam contamination

#### Beam Contamination as a fn of Energy



| Purity and contamination of | selection based on | C1L OR C2L/C1T OR C2T |
|-----------------------------|--------------------|-----------------------|

15

X = C1-loose OR C2-loose/C1-tight OR C2-tight

Selection of muons: MuonCounter > 20

Let's suppose R. factor for muon is same for that for hadrons

Contamination<sub>selection</sub> = 
$$\frac{\text{Contamination}_{\text{beam}}}{\text{R. factor}}$$



Subset of distribution with MC > 20

#### Measurement of selection purity (20 GeV)

| 20 GeV<br>Sel made<br>with | Nof<br>selection | Nof<br>muons | Nof muons<br>With<br>C1L OR C2L | R. factor | Nof<br>contamination<br>in beam | Nof contamination in selection | Purity of selection |
|----------------------------|------------------|--------------|---------------------------------|-----------|---------------------------------|--------------------------------|---------------------|
| C1L OR C2L                 | 26824            | 3592         | 204                             | 17.61     | 69823                           | 3965                           | 0.85                |

|    | 20 GeV           | Nof<br>selection | Nof<br>muons | Nof muons<br>With | R. factor | Nof contamination | Nof contamination | Purity of selection |
|----|------------------|------------------|--------------|-------------------|-----------|-------------------|-------------------|---------------------|
| S  | Sel made<br>with |                  |              | C1T OR C2T        |           | in beam           | in selection      |                     |
| C' | 1T OR C2T        | 26158            | 3592         | 183               | 19.61     | 70448             | 3592              | 0.86                |

## Rejection factor as a fn of Energy



#### contamination of selection (norm. with totEvents)



#### purity of selected events as a fn of Energy



Numbers are calculated by counting only muons

In reality the purity of selections are lesser

## Thank You!

# Back Ups

#### Measurement of beam purity - corrected with muon efficiency

Purity<sub>electron</sub> = 
$$\frac{(N_{\text{selected events}}/N_{\text{tot events}})}{\text{eff (el)}}$$

#### Measurement of beam purity – corrected with muon efficiency





Values decreased significantly