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Two milestones

IN high energy physics
during past 10 years



The discovery of the Higgs boson

July 2012
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The first observation of gravitational waves

2015
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while leaving no clear sign of beyond SM physics ...



and yet
we know there are something more than just SM
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where should we look for ?




without any guiding principle

searching for new physics could be challenging

for dark matter

?

, weakly interacting massive particle (WIMP)
relaxions

self-interaction DM

primordial BH
(L
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without any guiding principle

searching for new physics could be challenging

infinitely larger number of possibilities in theory space
with a finite number of experiments/observations

how do we prioritize a certain theory space?
what’s our strategies?

107 %% eV 10°7 GeV



naturalness reasoning

canonical approaches based on symmetry
iIntroduce TeV scale new dynamics
to soften UV sensitivities of the Higgs mass

e.g. supersymmetry, technicolor, compositness, etc.



with naturalness reasoning

for dark matter

weakly interacting massive particle (WIMP)

with TeV scale new physics

10~ %% eV TeV 10°7 GeV



with naturalness reasoning

Particle Data Group 2021
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Figure 27.1: Upper limits on the ST DM-nucleon cross section as a function of DM mass.

weakly interacting massive particle (WIMP)

with TeV scale new physics
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Bergstrom et al. (2013)
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Figure 27.1: Upper limits on the ST DM-nucleon cross section as a function of DM mass.

weakly interacting massive particle (WIMP)

with TeV scale new physics
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Bergstrom et al. (2013)
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WIMP and TeV scale new physics
guided by naturalness reasoning
are under intense pressure
from DM (in)direct detection exps. and LHC



A recent development in naturalness reasoning
provide interesting new insights

a particularly interesting proposal Is
cosmological relaxation of EW scale Granam, kaplan, Rajendran (15)
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A recent development in naturalness reasoning
provide interesting new insights

a particularly interesting proposal Is
cosmological relaxation of EW scale Granam, kaplan, Rajendran (15)

A4
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this solution iIs distinctive to canonical approaches
as It resolves the hierarchy problem in a dynamical way

predictions/signatures are also quite different:
unlike symmetry-based approahces predicting TeV scale new physics
this dynamical solution predicts an IR d.o.f — an axion-like particle



not only cosmological relaxation scenario
but also many other dynamical solutions
predicts axion-like particles

at the same time this axion-like particles
can also be dark matter in the universe!

Svrcek, Witten (08); Arvanitaki et al (09);

Graham, Kaplan, Rajendran (15); Arvanitaki et al (16);
Banerjee, HK, Perez (18); Arkani-Hamed et al (20);
Tito D’Agnolo, Teresi (21); Chatrchyan, Servant (22);
many others ...



weakly interacting massive particle (WIMP)

with TeV scale new physics

10~ %% eV TeV 10°7 GeV



axion-like particles

10~ %% eV TeV 10°7 GeV
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as this type of solution predicts a light degree of freedom
strategies for new physics search must be adapted accordingly

since the mass of axion-like particle is less restricted
It Introduces new challenges:
where / how should we search for this new physics?



intensity/energy
frontier

precision
frontier

astrophysics
frontier




In past 10 years
Interesting progress has been made
for searching for axion-like particle (DM)
In the ‘sky’ and on ‘tables’

ESky!

precision

frontier

astrophysics

frontier
‘Table’
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axion searches on ‘tables’
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now It looks like ...
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In addition to this
axion DM can also be searched
with atomic/molecular spectroscopy, interferometry, and accelerometry

HK, Perez (22)
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In the standard model
the following is allowed

L =0GG



In the standard model
the following is allowed

L =0GG

0 is physical

QCD vacuum energy depends on 6



In the standard model
the following is allowed

L =0GG

0 is physical

pion mass also depends on 6
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In the standard model
the following is allowed

L =0GG

0 is physical

pion mass also depends on 6

m=(0) = mi(O)\/l ; M sin®(0/2)

My + Mg)?

Different choice of 6 leads to different spectrum



In the standard model
the following is allowed

L =0GG

0 is physical

I d, ~10"%9e - cm

dp|exp S 107°%e - cm

Abel et al (20)

neutron electric dipole moment



Consider

L =0GG

Now imagine 6=a/f as dynamical degrees of freedom

E(6)




Consider

L =0GG

Now imagine 6=a/f as dynamical degrees of freedom

E(6)

The strong CP angle dynamically relaxes to CP-conserving vacuum
solving the strong CP dynamically



This axion could oscillate around minimum

Such a oscillating field behaves like matter

Axion oscillation around its minimum comprises DM in the present universe



What are the implications?

Since QCD spectrum depends on @

the presence of axion DM naturally imply

oscillations of nuclear quantities
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What are the implications?

Since QCD spectrum depends on @

the presence of axion DM naturally imply

oscillations of nuclear quantities
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Are oscillations of atomic energy level observable in a lab?



Are oscillations of atomic energy level observable in a lab?

Imagine a situation where we interrogate atoms periodically

to measure the transition frequency



Are oscillations of atomic energy level observable in a lab?

Imagine a situation where we interrogate atoms periodically

to measure the transition frequency

time



Now imagine the same exp. but with axion
) ——— |
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Now imagine the same exp. but with axion
) ——— |
0) ———— |

the same measurement would give us

time



the same measurement would give us

time

by looking for a harmonic signal
oscillations of energy level can be probed



the same measurement would give us

time

by looking for a harmonic signal
oscillations of energy level can be probed

for dilaton-like (or scalar) DM searches
L = oY+ 9FF + ¢GG

atomic clocks provide useful tools
|[Arvanitaki, van Tilburg, Huang 14]




To see how It works

let us consider hyperfine splitting in hydrogen atom

H
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f = 1420 MHz

A=21lcm
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To see how It works

let us consider hyperfine splitting in hydrogen atom

H

1)

f = 1420 MHz
A=21lcm




In the presence of axion DM

energy level slightly changes as

1
— ~ 107" 1+ cos(2mt)
L mis o




harmonic signal @ w = 2m

Is it a realistic system or just a toy model?

|s this observable?



[Kennedy et al 20]
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axion DM searches in the ‘sky’
has also observed significant progress
during past 10 years



a characteristic feature of axion DM
IS ItS wave nature

2
A= L~ O.6kpc<

v

10~ 22 eV> (200 km/sec>

T (v

the size of wavelength could be astronomical !



Schive, Chiueh, Broadhurst (14)
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* characteristic soliton at the center has been observed

* small scale structures are erased




Mocz et al (17)

Veltmaat, Niemeyer, Schwabe (18)




Many interesting astrophysical phenomena arises
from solitons and granule structure of axion DM

o galaxy rotation curve Bar, Blas, Blum, Sibiryakov (18); Bar, Blum, Eby, Sato (19); Bar, Blum Chen (21)

* Interaction between quasiparticle and stars Amorisco, Loeb (18) ; Church, Mocz, Ostriker (18);
Marsh, Niemeyer (19); Dalal et al (20);

Dalal, Kravtsov (22)

IrSiC et al (17); Hlozek et al (17); Kobayashi et al (17); Nori et al (18);
° large SCale StrUCtureS Rogers, Peiris (20); Schutz (20); Lagué et al (21)

See also a recent review by Lam Hui (21)



Axion (wave) dark matter can also be tested by
gravitational waves

HK, Alessandro Lenoci, Isak Stomberg, Xiao Xue (in preparation)



let us consider a gas cloud and stars (DM) in a circular orbit

gas
star (or dark matter)



Imagine gas could contracts via dissipation adiabatically

gas
I = ry — \/ G M ()7 star (or dark matter)
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Imagine gas could contracts via dissipation adiabatically

gas
I = ry — \/GMenc(T‘)T star (or dark matter)




Imagine gas could contracts via dissipation adiabatically

stellar (DM) distribution becomes steeper
near the center of system

gas
L =1rv=1/GMe(r)r star (or dark matter)
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GWs
fGW — 2forb

Adiabatically compressed DM halo



GWs
fGW — 2forb

Adiabatically compressed DM halo



m—= 10" eV
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HK, Alessandro Lenoci (21)

DM overdensity forms
behind the BH or NS
exerting additional frictional force




GWs
fGW — 2forb

In adiabatically compressed DM halo, the orbit of BH (or NS) decay faster



In the absence of compressed halo
gravitaitonal wave would look like



In the absence of compressed halo
gravitaitonal wave would look like

But in the presence of compressed DM halo
it would instead look like

T

dephasing takes place here
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Future gravitational wave detectors
such as Laser Interferometer Space Antenna (LISA)
will be sensitive to this kind of signal
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Summary

A fresh look at hierarchy problem has revealed an interesting direction for new physics
search in the context of axion and axion-like particles

Axion (DM) search could be challenging as its mass is less restricted

Over past ~ 10 years, interesting progress has been made in terms of terrestrial axion
detection as well as astrophysical probes of axion

To maximize the discovery potential, probing axions from multiple physics frontier, e.qg.
precision/astro/intensity, is needed



