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Top pair process

Top-quark pair process

e Top quark — the heaviest elementary with a semileptonic decay
particle in the Standard model.

e Top-quark pair (ttbar, tt ) process — the
most common process with top quarks.
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Standard Model of Elementary Particles

mass  =2.2 MeV/c? =1.28 GeV/c?

Top pair process

Top-quark pair process

Top quark — the heaviest elementary with a semileptonic decay
particle in the Standard model.

Top-quark pair (ttbar, tt ) process — the
most common process with top quarks.
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Outline of the presentation

1. Top pair event generation with
Sherpa event generator

ISR shower
>
>
>
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2. Jet Energy Correction studies
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() tt event simulation using Sherpa

The complexity of generating a full physics
event requires several general-purpose
event generators for cross-validation:

Pythia Herwig

fyt

Sherpa:

e Allows to switch between the
Lund string model (Pythia) and
cluster model (like Herwig) =
opportunities for comparison.

e Allows to calculate tt together
with many jets.
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tt event simulation using Sherpa
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tt event simulation using Sherpa
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tt event simulation using Sherpa

The complexity of generating a full physics
event requires several general-purpose
event generators for cross-validation:

Pythia

Herwig

Sherpa

Sherpa:

e Allows to switch between the
Lund string model (Pythia) and
cluster model (like Herwig) =
opportunities for comparison. a)

e Allows to calculate tt together

: ) b)
with many jets.
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The goal:

ISR shower
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) hadron decays
underlying event 0'

e Generate and validate a new CMS Sherpa
tt sample:

Contribute to the CMS-ATLAS common sample
= promote interexperimental collaboration.

Study the impact of the choice of the
hadronization model.




tt event simulation using Sherpa

e Leptons — too hard in Pythia but good in Sherpa. e In full agreement with the
ATLAS Sherpa sample

e Sherpa solves the known issue of hadronically (not on the plots)
not on the plots).

decaying top being too hard in Powheg+Pythia.

Lepton transverse momentum, pr, Hadronically decaying top p; distribution
distribution in tt to two leptons decay channel In tf to lepton+jets decay channel
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https://arxiv.org/abs/1910.08819
https://arxiv.org/abs/1803.08856

tt event simulation using Sherpa

e Sherpa fails to describe the
relatively rare boosted top
quark events.

Jet mass distribution in boosted top quark decays
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e The reason the disagreement in jet
substructure can be explained by a different
hadronization algorithm between Sherpa
and Pythia (not on the plots).

Distribution of N-point energy correlation
double ratio in the lepton+jets channel
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https://arxiv.org/abs/1911.03800
https://arxiv.org/pdf/1808.07340
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e General CMS strategy:

(@)

Apply inclusive (pr,n) dependent corrections (L2L3) on MC

and data
Residual corrections on data (L2L3Res)

Jet flavour uncertainty (last derived in 2014)
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Jet energy correction studies

e Different flavour of the initial quark/gluon = different hadron content =
different response.

e Flavour dependent (L5) correction last derived in 2014.

W mass peak shifted from 80 GeV to 84
GeV due to the high light jet response

Median response for b-jets and light-jet in a tt sample . e T
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Jet energy correction studies

® Maitching the reco jet with an ME particle (LHE
particle) assigns jets from gluon splitting g —
qq as gluons.

® Reduces the disagreement between QCD and
TTBAR sample to under 0.1%.
Jet energy responses for b-jet for a tt
and QCD sample at 0<n<1.3
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e Agreement also in the light quark
jet responses.

g

q

QCD = mostly dijet :>@m<
g

Jet energy responses for c-jet for a tt
and QCD sample at 0<n<1.3
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Anti-flavour and flavour jet response differences

e Pythia predicts a O(0.1%) larger response for anti-quark jets than for jets = anti-
guark jets have a larger antiparticle content = anihilation.

e Herwig predicts such effect only for b-jets.
e Do generators represent the actual physics? = data driven techniques.

The ratio of jet energy responses for anti-b-jet The ratio of jet energy responses for anti-c-jet

and b-jet at 0<n<1.3 and c-jetat 0<n<1.3
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) Anti-flavour and flavour jet response differences

e Do generators represent the actual physics? = data driven techniques.
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e ECAL+HCAL test beam data show
higher response for anti-protons ()
than protons (7).

We plan to:

e Use the beam data to validate the
GEANT 4 simulation.

e Verify with collision data using isolated
pions at high energies.

e Checking tracking of positive and
negative muons in Z decays.



https://lss.fnal.gov/archive/2008/pub/fermilab-pub-08-661-e-ppd.pdf#page=10

Summary of the presentation

1. Top pair event generation with
Sherpa event generator
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Tracker, ECAL, HCAL

~)
adronization Lo
hadron decays

e Performing flavour-dependent jet
energy correction studies.

The first study of study quark vs
antiquark jet response in CMS.

e A Sherpa tt sample generated
and validated.

e A common CMS-ATLAS note to o
be published in the coming
months.
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Kinematic fit cannot be used for the mass
difference measurement because of the
Mt haa = Mg 1ep CONStraint.

Replaced by a selection algorithm:

o take events with 2 b-tagged (b) and 2 untagged jets (q) °

o assign untagged jets to W boson

o combine b jets with the W boson and keep both
possible solutions

o add aW mass window

Am, analysis requires determining the
response differences between the quark jets
and anti-quark jets in the detector.
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Top-quark pair process
with a semileptonic decay
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Top-quark pair process

« Kinematic fit cannot be used for the mass with a semileptonic decay
difference measurement because of the
Mt haa = Mg 1ep CONStraint.

« Replaced by a selection algorithm:
o take events with 2 b-tagged (b) and 2 untagged jets (q) °
o assign untagged jets to W boson

o combine b jets with the W boson and keep both
possible solutions

o add a W mass window ::: rﬂ\ et
o Am,; analysis requires determining the s J l T

response differences between the quark jets
and anti-quark jets in the detector.
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