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The Motivation

e The nature of dark matter can be
explored by testing the prediction of
subhalo abundance in LCDM

e CDM expected to form dark subhalos
orders of magnitude below 108 M
which remain dark

©

e The abundance of subhalos
dependent on the particular DM
model
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Gravitational
e Signatures in Stellar
Phase-Space

% Orbiting subhalo imprints a
ﬁ gravitational signature in the
stellar phase-space

i? ﬁ We hope to quantify this
ﬁ disturbance from the data
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Each galaxy

Milky Way-like Galaxy Simulations approx.2 TB in
Slze
e \We used three Milky Way-like galaxies from the Latte suite of FIRE-2
simulations: m12f, m12i and m12m (Wetzel et al., 2016 [1602.05957])

e Subhalos are identified using the Amiga Halo Finder Code (AHF) (Knollmann
and Kebe, 2009 [0904.3662])
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e Three Gaia DR2-like synthetic
surveys per simulated galaxy

(Sanderson et al., 2020)

m12f,

Synthetic Gaia surveys o  Approximately 10° mock stellar

observations per survey (total of 9

surveys)

After removing disk - 1.5 billion

observations across the galaxies

o Stars correlated with potentially
observable DM subhalo locations

O

K 5 =7 9
S a0 L

LSRO, Synthetic Gaia stars
P PR [T ([ U 108

108
104
108

102

10!




Signal stars

i? ‘L,? Binary C.Zlassifier
(Supervised)
% vy

__________________________________________________ Signal model is
used explicitly in
ﬁ ﬁ optimization

Anomaly Detection Background

(Unsupervised) stars An om a.ly
Background DeteCtIOn

samples are used

in optimization ApproaCh



Detectability in Ideal Conditions

e Model optimized

and validated on _
m12m and mM12i =k
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Performance in Ideal Conditions
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Detectability in synthetic Gaia

e We check the performance when
selection and experimental effects are
taken into account

e Training and testing is done on all three
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Conclusion & Future work

e In our work, we investigated the gravitational imprint of subhalos in stellar
kinematics

o We treated this as a big data problem and used simple ML algorithms to gauge the signal

e We found that despite the limited signal statistics, we are able to obtain
non-trivial sensitivity when differentiating between signal and
background stars







Anomaly detection approach

e Quantifying the difference between halo-associated and
background stars
e \We use an autoencoder neural network E(X) 7 C RP

o Each star is characterised by a feature vector X / 6
D(z) » X' e R

e The distribution of the reconstruction loss is used as an empirical
discriminator between background and halo-associated stars

Ly(X;) = [|Xi — D(E(X,))]
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Projected stellar
number densities in
the synthetic Gaia
datasets for LSRO in
all three galaxies.
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number halo-associated stars
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Summary statistics of
synthetic Gaia DR2

stars with [z| > 5 kpe

halo-associated stars |%)|

with Uy I%I

subhalos w/ halo-associated stars

mi2f
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0.35%
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Training Figures

Subhalos Random
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