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> Significant impact on performance

> Manual hyperparameter optimization
> Automation

> HH — multilepton [Karl, Norman]

> Choice of best strategy unclear

> Parallelization @ HPC


https://indico.cern.ch/event/1147717/timetable/#35-search-for-higgs-boson-pair
https://indico.cern.ch/event/1147717/timetable/#36-prospects-for-di-higgs-boso
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Particle swarm optimization

Swarm of particles

v

> Location = one solution
Global Best

> Each value on an axis [

corresponds to one

hyperparameter

3 steps of evolution:
a Espionage

v

Xgh = argmax {[xp, €R S]Nino)}
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Swarm of particles

v

> Location = one solution
Global Best
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Particle swarm optimization

Swarm of particles

v

> Location = one solution
Global Best

> Each value on an axis Sohtion
corresponds to one '
hyperparameter

3 steps of evolution:

v

a Espionage
b Position update
c Speed update
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Bayesian optimization

> Optimization done on
surrogate function
> Fast to evaluate
> Derivatives and analytic
form known

OF and SF

> Reported to work best with
<1k evaluations

> 3 steps of evolution:

> Find points to evaluate . e : ‘
(a-El)

> Evaluate points

> Update surrogate function
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Rosenbrock function

R(x,y) = (a— x)> + b(y — x*)?

> Well known trial function
> (va)min = (37 ‘32)

> Objective function
Rosenbrock function itself.
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ATLAS Higgs boson machine learning challenge (HBC) (i)

v

v

Kaggle competition

Run-1 simplified ATLAS
H — 77 analysis
Signal: H — 77
Backgrounds:
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> W-boson decay

More representative task of
ML in HEP analysis
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ATLAS Higgs boson machine learning challenge (HBC) (iii)

Table: The seven chosen XGBoost hyperparameters to be optimized

min max

num-boost-round 1 500
learning-rate 107> | 1.0

max-depth 1 6

gamma 0.0 5.0
min-child-weight | 0.0 | 500.0
subsample 0.8 1.0
colsample-bytree | 0.3 1.0
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ATLAS Higgs boson machine learning challenge (HBC) (ii)
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ATLAS Higgs boson machine learning challenge (HBC) (ii)
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dAMS = AMSest — i - max(0, [AMSiest — AMSirai]) |
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Rosenbrock function HBC

—e— PSO private
PSO public
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Parallelization (Amdahl’s law)
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Parallelization (PSO)

PSO optimal batch size vs total evaluations
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Performance summary
PSO BO
Faster convergance later | earlier
Parallelization capabilities | v v
Suitable for low resources v v
Computational overhead v
Optimal Nreative ~2% | <

HH — multilepton: ~10% improvement

Summary
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title

Rosenbrock

\ Time
Bayesian optimization + HBC 3000 CPUh
(Niter =30 & Nparallel - 100)
Rosenbrock 0.06 CPUs
Particle swarm optimization 0.01 CPUs
HBC O(30 CPUmin)
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