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Overview: Grimus-Neufeld model, neutrino masses and LFV

Grimus–Neufeld model [GN ’89] = SM+2’nd Higgs doublet (2HDM) + 1 sterile
neutrino

can include neutrino masses and mixings
masses and mixings of neutrinos depend on scalar potential parameters
can give cLFV processes

We look at GNM’s specific scenario:
sterile Majorana neutrino mass is small
⇒enhanced cLFV decay rates
⇒Approximate Z2 symmetry in Yukawa sector
⇒Makes it similar to other popular models: scotogenic, scoto-seesaw.

Larger cLFV decay rates make restrictions from experiments possible on
scalar+neutrino sector.
⇒ We put unique limit on 1 parameter in scalar sector from LFV
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GN

The Lagrangian:

L = L2HDM −
1
2
MNN−Y

(1)
i `iεH1N−Y

(2)
i `iεH2N +h.c ., `i =

(
νi

`−i

)
where ` – lepton doublet, N−sterile neutrino, j = e,µ,τ ; H1 and H2 in the Higgs
basis (〈H2〉= 0).
We say that if

y2 ≡∑
i

∣∣∣Y (1)
i

∣∣∣2� 1

we have approximate Z2 symmetry in Yukawa sector:

SM particles→+SM particles, N,H2→−N,−H2

y – Z2 small symmetry breaking parameter
⇒ tiny seesaw scale (next slide)
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tiny Y
(1)
i and tiny seesaw

L = L2HDM −
1
2
MNN−Y

(1)
i `iεH1N−Y

(2)
i `iεH2N +h.c .

First two additional terms (when 〈H1〉 → 1√
2
v) lead to two non-vanishing neutrino

masses at tree-level (labeled m3 <m4):

m3 =
y2v2

2m4
,m4−m3 = M, y2 ≡∑

i

∣∣∣Y (1)
i

∣∣∣2 .
m3 is the scale of active neutrinos m3 = O (0.01eV).
Seesaw is when m4�m3 and so m4 ≈M.
originally, by ”naturalness” argument: m3 = O (0.01eV) ,y = O (1)⇒m4 = O (GUT)
but if we have y < O

(
10−7

)
⇒m4 < 10GeV – a tiny seesaw scale.

(also ”natural” because of Z2)

The last term in L induces radiative neutrino mass generation and cLFV.
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Y
(2)
i : radiative mass and cLFV

L = L2HDM −
1
2
MNN−Y

(1)
i `iεH1N−Y

(2)
i `iεH2N +h.c . , Y

(1)
i � 1

.

νi N

H0
2

νj

Y
(2)
i Y

(2)
j

Figure: Radiative mass generation gives mpole
2 .

.

ℓ−i N

H±
2

ℓ−j

γ

Y
(2)
i Y

∗(2)
j

Figure: cLFV decay `i → `jγ

Same diagram exist for scotogenic, scoto-seesaw models.
⇒keeping Y (1) (or m4) small thus makes the GN similar to them
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`i → `jγ

Light m4 and mH+ ⇒ larger the amplitude
⇒approximate Z2 also enchances cLFV decays
We look at:

M ≈m4 < 10GeV, mH+ < 1TeV

Decay rate:

Γi→jγ =
m5

i

16π
|Aij |2 , where Aij =

Y
(2)
i Y

∗(2)
j

m2
H±

× const. for m4�mH+ .

Y (2) to be determined from neutrino masses and mixings at 1-loop
(recall that it is responsible for radiative mass)

.

ℓ−i N

H±
2

ℓ−j

γ

Y
(2)
i Y

∗(2)
j
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parametrization of Y (2)
i

Define at external momentum p2 = 0, in the Higgs basis:

Λ =

.

N

H0
2

1 1

if Z2=
m4

32π2 ln
m2

H

m2
A

∼ λ5m4

Yukawa couplings (parameters, not fixed by neutrino data are in red):

Y
(2)
i = sign(Λ)

√
mpole

2
|Λ| · z (r ,ω22)

(
0,R22,

mpole
3

mpole
2

R32

)
j

Uji , U =

{
U†
PMNS for NO

OIOU
†
PMNS for IO

,

R =

(
cos r e iω22 −sin r e−iω32(r ,ω22)e iφ(Λ)

sin r e iω32(r ,ω22) cos r e−iω22e iφ(Λ)

)
,

(
νradiative
νseesaw

)
= R

(
ν2
ν3

)
r is a mixing angle between seesaw and radiative, ω22– a free phase.
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parametrization of Y (2)
i

Decay rate:

Γi→jγ =
m5

i

16π
|Aij |2 , where Aij =

Y
(2)
i Y

∗(2)
j

m2
H+

× const. for m4�mH+ .

Inserting the parametrization for Y (2)
i becomes:

Aij =
f (r ,ω22,PMNS,neutrino masses)

|Λ|m2
H±

we call Λm2
H± a photon factor.

We look at experimental constraints for `i → `jγ and put lower bound on Λm2
H± as

a function of r , ω22

we also give integrated bound on |Λ|m2
H± (for the model to be completely excluded).
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Summary of important experiments and observations

”Important” – one which give strongest constraint.
We checked that 3-body decays and µ → e conversion are not important, when
mH± < 1TeV.
µ → eγ is important in almost all of the parameter space.
τ → eγ and τ → µγ become important in a tiny parameter space:

3 solutions in r −ω plane exist for each Y
(2)
e = 0, Y (2)

µ = 0, or Y (2)
τ = 0

⇒ around the Y
(2)
e = 0 and Y

(2)
µ = 0 µ → eγ vanishes, but τ decays do not

⇒ the ”weaker” τ → µγ and τ → eγ give bound on Λm2
H± in such case

⇒ we can completely exclude some range for |Λ|m2
H± with these 3 decay

experiments.
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Constraints from µ → eγ

Figure: Lower bound on Λm2
H± from µ → eγ as a function of r and ω22 for NO and IO. White

regions are dissalowed by neutrino sector. The µ → eγ vanishes at two points in r −ω plane,
indicated in the plots by

∣∣∣Y (2)
e,µ

∣∣∣= 0 .
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Very lowest Λm2
H± from τ decays

The special solutions of Y (2)
e,µ = 0 makes µ → eγ vanish, but τ decays have

non-zero prediction at those points:
τ decays give bounds Λm2

H± on , when Y
(2)
e,µ = 0

Process and parameter point NO, |Λ|m2
H± [GeV3] IO, |Λ|m2

H± [GeV3]
τ → eγ at Y (2)

µ = 0 1.9 ·10−6 4.0 ·10−6

τ → µγ at Y (2)
e = 0 1.3 ·10−5 7.6 ·10−6

Table: Lower bound on Λm2
H± in special points.
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what if τ → µγ observed in Belle-II?
(It is tight)

Figure: Space for possible observation of τ → µγ in Belle-II around Y
(2)
e = 0
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what if τ → eγ observed in Belle-II?
(It is tight)

Figure: Space for possible observation of τ → µγ in Belle-II around Y
(2)
µ = 0
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what if τ → `γ observed in planned experiments?
(It is tight)

Observed processes NO, |Λ|m2
H± [GeV3] IO, |Λ|m2

H± [GeV3]
τ → µγ & µ → eγ 9.43 ·10−5

5.12 ·10−5
τ → µγ only 9.07 ·10−5

τ → eγ & µ → eγ
6.28 ·10−6 1.34 ·10−5

τ → eγ only

Table: Upper bound on |Λ|m2
H± in special points, if τ → `γ is observed

Extremely tight parameter space around fine tuned point
⇒ it is ”unnatural” in GNM to expect tau decays in Belle-II
We define ”typical” scenario in GNM, in which these regions are excluded

we will give ”typical” bound on |Λ|m2
H± in ”typical” scenario

but also give ”absolute” bound on |Λ|m2
H± including all parameter range in r −ω22.
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Final results

absolute for NO(IO): |Λ|m2
H± > 1.9(4.0) ·10−6 GeV3 ,

typical (no τ → e(or µ)γ expected): |Λ|m2
H± & 10−4 GeV3 .

(1)

For easy interpretation, let us assume Z2 and mH± ≈mA ≈mH ≈ O (v):

|Λ|m2
H± =

m2
H±m4

32π2 ln
m2

H

m2
A

≈ |λ5|m4 ·
v2

32π2 ,

H1

H1

H2

H2

λ5

which leads to:

absolute for NO(IO): |λ5|> 1(2) ·10−2 keV
m4

,

typical (no τ → e(or µ)γ expected): |λ5|&
keV
m4

.

(2)
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Conclusions

Small λ5 and m4 can give signatures in cLFV in GNM.
Signatures for large m4 are not likely (give way weaker constraints )

For any 2HDM potential, we have limits on |Λ|m±H from cLFV to tell if neutrinos
can be realised as in GNM (in tiny seesaw)
Results directly apply to scoto-seesaw model and give qualitative behaviour for
scotogenic model too (both of them have exact Z2, but more sterile neutrinos)
There is a 2 orders of magnitude difference between ”completely excluded” and
most likely (or ”typically”) excluded value.

Thank you!
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Relating to experiments

We order mpole
2 <mpole

3 , so

NH: mpole
2 =

√
∆m2

21 , m
pole
3 =

√
∆m2

31 ,

IH: mpole
2 =

√
∆m2

31 , m
pole
3 =

√
∆m2

21 + ∆m2
31 .

1 / 1


	Appendix

