Charged lepton flavor violation in the Grimus-Neufeld model

(based on 2206.00661)

<u>Vytautas Dūdėnas</u>¹, Thomas Gajdosik¹, Uladzimir Khasianevich², Wojciech Kotlarski³, Dominik Stöckinger²

¹Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University ²Institut für Kern- und Teilchenphysik, TU Dresden ³National Centre for Nuclear Research, Warsaw, Poland This project has received funding from European Social Fund (project No 09.3.3-LMT-K-712-19-0013) under grant agreement

with the Research Council of Lithuania (LMTLT)

October 11, 2022

Overview: Grimus-Neufeld model, neutrino masses and LFV

- Grimus–Neufeld model [GN '89] = SM+2'nd Higgs doublet (2HDM) + 1 sterile neutrino
 - can include neutrino masses and mixings
 - masses and mixings of neutrinos depend on scalar potential parameters
 - can give cLFV processes
- We look at GNM's specific scenario:
 - sterile Majorana neutrino mass is small
 - \Rightarrow enhanced cLFV decay rates
 - \Rightarrow Approximate Z_2 symmetry in Yukawa sector
 - \Rightarrow Makes it similar to other popular models: scotogenic, scoto-seesaw.
- Larger cLFV decay rates make restrictions from experiments possible on scalar+neutrino sector.
 - \Rightarrow We put unique limit on 1 parameter in scalar sector from LFV

• The Lagrangian:

$$\mathscr{L} = \mathscr{L}_{2HDM} - \frac{1}{2}MNN - Y_i^{(1)}\ell_i\varepsilon H_1N - Y_i^{(2)}\ell_i\varepsilon H_2N + h.c., \quad \ell_i = \begin{pmatrix} v_i \\ \ell_i^- \end{pmatrix}$$

where ℓ – lepton doublet, *N*-sterile neutrino, $j = e, \mu, \tau$; H_1 and H_2 in the Higgs basis ($\langle H_2 \rangle = 0$).

• We say that if

$$y^2 \equiv \sum_i \left| Y_i^{(1)} \right|^2 \ll 1$$

we have approximate Z_2 symmetry in Yukawa sector:

SM particles $\rightarrow +$ SM particles, $N, H_2 \rightarrow -N, -H_2$

y − Z₂ small symmetry breaking parameter
 ⇒ tiny seesaw scale (next slide)

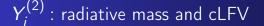
tiny $Y_i^{(1)}$ and tiny seesaw

$$\mathscr{L} = \mathscr{L}_{2HDM} - \frac{1}{2}MNN - \frac{Y_i^{(1)}}{i}\ell_i\varepsilon H_1N - Y_i^{(2)}\ell_i\varepsilon H_2N + h.c.$$

• First two additional terms (when $\langle H_1 \rangle \rightarrow \frac{1}{\sqrt{2}} \nu$) lead to two non-vanishing neutrino masses at tree-level (labeled $m_3 < m_4$):

$$m_3 = \frac{y^2 v^2}{2m_4}, m_4 - m_3 = M, y^2 \equiv \sum_i |Y_i^{(1)}|^2.$$

- m_3 is the scale of active neutrinos $m_3 = O(0.01 \text{eV})$.
- Seesaw is when $m_4 \gg m_3$ and so $m_4 \approx M$.
- originally, by "naturalness" argument: $m_3 = O(0.01 \text{eV}), y = O(1) \Rightarrow m_4 = O(\text{GUT})$
- but if we have $y < O(10^{-7}) \Rightarrow m_4 < 10$ GeV a tiny seesaw scale. (also "natural" because of Z_2)
- \bullet The last term in ${\mathscr L}$ induces radiative neutrino mass generation and cLFV.



$$\mathscr{L} = \mathscr{L}_{2HDM} - \frac{1}{2}MNN - Y_i^{(1)}\ell_i\varepsilon H_1N - Y_i^{(2)}\ell_i\varepsilon H_2N + h.c., \quad Y_i^{(1)} \ll 1$$

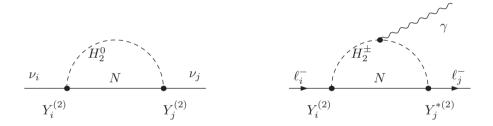


Figure: Radiative mass generation gives m_2^{pole} .

Figure: cLFV decay $\ell_i \rightarrow \ell_j \gamma$

• Same diagram exist for scotogenic, scoto-seesaw models. \Rightarrow keeping $Y^{(1)}$ (or m_4) small thus makes the GN similar to them

$$\ell_i \rightarrow \ell_j \gamma$$

- Light m₄ and m_{H⁺} ⇒ larger the amplitude ⇒approximate Z₂ also enchances cLFV decays
- We look at:

 $M pprox m_4 < 10\,{
m GeV}, \quad m_{H^+} < 1{
m TeV}$

• Decay rate:

$$\Gamma_{i \to j\gamma} = \frac{m_i^5}{16\pi} |A_{ij}|^2 , \quad \text{where } A_{ij} = \frac{Y_i^{(2)} Y_j^{*(2)}}{m_{H^{\pm}}^2} \times \text{const. for } m_4 \ll m_{H^+} .$$

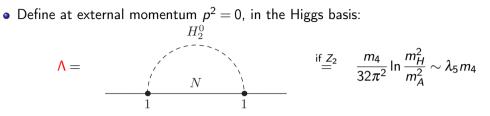
• $Y^{(2)}$ to be determined from neutrino masses and mixings at 1-loop (recall that it is responsible for radiative mass)

 ℓ^-

 \mathcal{N}

 $\tau_{z}(2)$

parametrization of $Y_i^{(2)}$



• Yukawa couplings (parameters, not fixed by neutrino data are in red):

$$Y_{i}^{(2)} = \operatorname{sign}(\Lambda) \sqrt{\frac{m_{2}^{\text{pole}}}{|\Lambda| \cdot z(r, \omega_{22})}} \left(0, R_{22}, \frac{m_{3}^{\text{pole}}}{m_{2}^{\text{pole}}} R_{32}\right)_{j} U_{ji}, \quad U = \begin{cases} U_{PMNS}^{\dagger} & \text{for NO} \\ O_{IO} U_{PMNS}^{\dagger} & \text{for IO} \end{cases}$$

$$R = \begin{pmatrix} \cos r e^{i\omega_{22}} & -\sin r e^{-i\omega_{32}(r,\omega_{22})} e^{i\phi(\Lambda)} \\ \sin r e^{i\omega_{32}(r,\omega_{22})} & \cos r e^{-i\omega_{22}} e^{i\phi(\Lambda)} \end{pmatrix}, \begin{pmatrix} v_{\text{radiative}} \\ v_{\text{seesaw}} \end{pmatrix} = R \begin{pmatrix} v_2 \\ v_3 \end{pmatrix}$$

• r is a mixing angle between seesaw and radiative, ω_{22} - a free phase.

parametrization of $Y_i^{(2)}$

• Decay rate:

$$\Gamma_{i \to j\gamma} = \frac{m_i^5}{16\pi} |A_{ij}|^2$$
, where $A_{ij} = \frac{Y_i^{(2)} Y_j^{*(2)}}{m_{H^+}^2} \times \text{const. for } m_4 \ll m_{H^+}$.

• Inserting the parametrization for $Y_i^{(2)}$ becomes:

$$A_{ij} = rac{f\left(r, \omega_{22}, \mathsf{PMNS}, \mathsf{neutrino} \; \mathsf{masses}
ight)}{\left|\Lambda
ight| m_{H^{\pm}}^2}$$

- we call $\Lambda m_{H^{\pm}}^2$ a photon factor.
- We look at experimental constraints for $\ell_i \rightarrow \ell_j \gamma$ and put lower bound on $\Lambda m_{H^{\pm}}^2$ as a function of r, ω_{22}
 - we also give integrated bound on $|\Lambda| m_{H^{\pm}}^2$ (for the model to be completely excluded).

Summary of important experiments and observations

- "Important" one which give strongest constraint.
- We checked that 3-body decays and $\mu \to e$ conversion are **not** important, when $m_{H^\pm} < 1 {
 m TeV}$.
- $\mu
 ightarrow e \gamma$ is important in *almost* all of the parameter space.
- $au
 ightarrow e\gamma$ and $au
 ightarrow \mu\gamma$ become important in a tiny parameter space:
 - 3 solutions in $r \omega$ plane exist for each $Y_e^{(2)} = 0$, $Y_{\mu}^{(2)} = 0$, or $Y_{\tau}^{(2)} = 0$ \Rightarrow around the $Y_e^{(2)} = 0$ and $Y_{\mu}^{(2)} = 0$ $\mu \to e\gamma$ vanishes, but τ decays do not \Rightarrow the "weaker" $\tau \to \mu\gamma$ and $\tau \to e\gamma$ give bound on $\Lambda m_{H^{\pm}}^2$ in such case \Rightarrow we can completely exclude some range for $|\Lambda| m_{H^{\pm}}^2$ with these 3 decay experiments.

Constraints from $\mu ightarrow e \gamma$

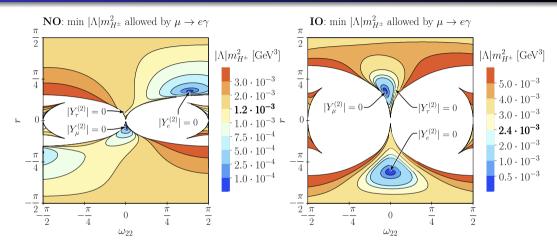


Figure: Lower bound on $\Lambda m_{H^{\pm}}^2$ from $\mu \to e\gamma$ as a function of r and ω_{22} for NO and IO. White regions are dissalowed by neutrino sector. The $\mu \to e\gamma$ vanishes at two points in $r - \omega$ plane, indicated in the plots by $\left| Y_{e,\mu}^{(2)} \right| = 0$.

- The special solutions of $Y_{e,\mu}^{(2)} = 0$ makes $\mu \to e\gamma$ vanish, but τ decays have non-zero prediction at those points:
 - au decays give bounds $\Lambda m^2_{H^\pm}$ on , when $Y^{(2)}_{e,\mu}=0$

 $\label{eq:process and parameter point} \begin{array}{|c|c|c|} \mbox{Process and parameter point} & \mbox{NO, } |\Lambda| \, m_{H^{\pm}}^2 \, [\mbox{GeV}^3] & \mbox{IO, } |\Lambda| \, m_{H^{\pm}}^2 \, [\mbox{GeV}^3] \\ \hline \hline \tau \to e \gamma \mbox{ at } Y_{\mu}^{(2)} = 0 & \mbox{1.9} \cdot 10^{-6} & \mbox{4.0} \cdot 10^{-6} \\ \hline \tau \to \mu \gamma \mbox{ at } Y_{e}^{(2)} = 0 & \mbox{1.3} \cdot 10^{-5} & \mbox{7.6} \cdot 10^{-6} \\ \hline \end{array}$

Table: Lower bound on $\Lambda m_{H^{\pm}}^2$ in special points.

what if $au o \mu \gamma$ observed in Belle-II? (It is tight)

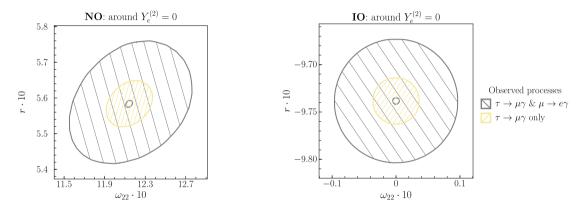


Figure: Space for possible observation of $au o \mu \gamma$ in Belle-II around $Y_e^{(2)}=0$

what if $au ightarrow e \gamma$ observed in Belle-II? (It is tight)

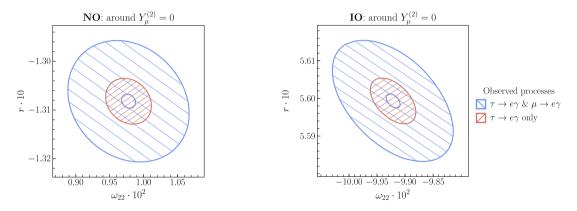


Figure: Space for possible observation of $au o \mu \gamma$ in Belle-II around $Y^{(2)}_{\mu}=0$

what if $au ightarrow \ell \gamma$ observed in planned experiments? (It is tight)

Observed processes	NO, $ \Lambda m_{H^{\pm}}^2$ [GeV ³]	IO, $ \Lambda m_{H^{\pm}}^2$ [GeV ³]
$ au o \mu \gamma \ \& \ \mu o e \gamma$	$9.43 \cdot 10^{-5}$	$5.12 \cdot 10^{-5}$
$ au ightarrow \mu \gamma$ only	$9.07\cdot 10^{-5}$	5.12.10
$ au ightarrow e \gamma \ \& \ \mu ightarrow e \gamma$	$6.28 \cdot 10^{-6}$	$1.34 \cdot 10^{-5}$
$ au ightarrow e \gamma$ only	0.20110	1.54,10

Table: Upper bound on $|\Lambda| \, m_{H^\pm}^2$ in special points, if $au o \ell \gamma$ is observed

- Extremely tight parameter space around fine tuned point
 ⇒ it is "unnatural" in GNM to expect tau decays in Belle-II
- We define "typical" scenario in GNM, in which these regions are excluded
 - we will give "typical" bound on $|\Lambda| m_{H^{\pm}}^2$ in "typical" scenario
 - but also give "absolute" bound on $|\Lambda| m_{H^{\pm}}^2$ including all parameter range in $r \omega_{22}$.

Final results

absolute for NO(IO):
$$\begin{split} |\Lambda| \ m_{H^{\pm}}^2 > 1.9(4.0) \cdot 10^{-6} \ \text{GeV}^3 \,, \\ \text{typical (no } \tau \to e(\text{or } \mu)\gamma \text{ expected}): \quad |\Lambda| \ m_{H^{\pm}}^2 \gtrsim 10^{-4} \ \text{GeV}^3 \,. \end{split}$$

• For easy interpretation, let us assume Z_2 and $m_{H^{\pm}} \approx m_A \approx m_H \approx O(v)$:

$$|\Lambda| m_{H^{\pm}}^{2} = \frac{m_{H^{\pm}}^{2} m_{4}}{32\pi^{2}} \ln \frac{m_{H}^{2}}{m_{A}^{2}} \approx |\lambda_{5}| m_{4} \cdot \frac{v^{2}}{32\pi^{2}}, \qquad \begin{array}{c} H_{1} \\ H_{1} \\ H_{1} \\ H_{2} \end{array}$$

which leads to:

absolute for NO(IO):
$$|\lambda_5| > 1(2) \cdot 10^{-2} \frac{\text{keV}}{m_4}$$
, (2)
typical (no $\tau \to e(\text{or } \mu)\gamma$ expected): $|\lambda_5| \gtrsim \frac{\text{keV}}{m_4}$.

- $\bullet\,$ Small λ_5 and m_4 can give signatures in cLFV in GNM.
 - Signatures for large m_4 are not likely (give way weaker constraints)
- For any 2HDM potential, we have limits on $|\Lambda| m_H^{\pm}$ from cLFV to tell if neutrinos can be realised as in GNM (in tiny seesaw)
- Results directly apply to scoto-seesaw model and give qualitative behaviour for scotogenic model too (both of them have exact Z_2 , but more sterile neutrinos)
- There is a 2 orders of magnitude difference between "completely excluded" and most likely (or "typically") excluded value.

Thank you!

 ${\ensuremath{\,\circ\,}}$ We order $m_2^{\rm pole} < m_3^{\rm pole}$, so

$$\begin{split} \text{NH:} \quad m_2^{\text{pole}} &= \sqrt{\Delta m_{21}^2} \,, \ m_3^{\text{pole}} &= \sqrt{\Delta m_{31}^2} \,, \\ \text{IH:} \quad m_2^{\text{pole}} &= \sqrt{\Delta m_{31}^2} \,, \ m_3^{\text{pole}} &= \sqrt{\Delta m_{21}^2 + \Delta m_{31}^2} \,. \end{split}$$