Yukawa couplings

in the Grimus-Neufeld model

Vytautas Dūdenas^a, Simonas Draukšas^a, <u>Thomas Gajdosik</u>^a, Uladzimir Khasianevich^b, Wojciech Kotlarski^b, Dominik Stöckinger^b

Vilnius University^a and TU Dresden^b

2nd CERN Baltic Conference, Vilnius, 2022/10/11

Standard Model (SM) + one fermionic singlet + two Higgs doublets

• is not a new idea: [G-N] W. Grimus and H. Neufeld, Nucl. Phys. B 325 (1989) 18.

Thanks to the project DaFi2022 for the support

outline of the talk

- the Grimus-Neufeld model (GNM) Lagrangian
- the Grimus-Lavoura approximation
 - allowing the analytic prediction of neutrino masses
- determining Lagrangian parameters
 - from masses and mixings
 - * in the Grimus-Lavoura approximation !
- the tiny seesaw scenario
 - with a new parametrization of the Yukawas
 - and approximate symmetries
- summary, progress, and plans

The GNM Lagrangian

- Gauge sector \mathcal{L}_G and Fermion-Gauge sector of the SM:
 - gauge group $U(1)_{Y} \otimes SU(2)_{L} \otimes SU(3)_{color}$
 - gauge covariant derivative $D_{\mu} \psi$
 - and the Lagrangian $\mathcal{L}_{\mathsf{G}-\mathsf{F}} = \sum_{\psi} \overline{\psi} \, i D \!\!\!/ \psi$
- Gauge-Higgs sector with the gauge covariant derivative $D_{\mu}\phi_a$ and the Lagrangian $\mathcal{L}_{G-H} = (D^{\mu}\phi_a)^{\dagger}(D_{\mu}\phi_a) - V(\phi_a)$ (2)
- Higgs sector: two Higgs doublets ϕ_a in the Higgs potential $V(\phi_a)$ [H-ON] H. E. Haber and D. O'Neil, Phys. Rev. D 83 (2011) 055017 [arXiv:1011.6188 [hep-ph]]
- Fermion-Higgs sector with the Yukawa couplings (ignoring quarks)

$$\mathcal{L}_{\mathsf{F}-\mathsf{H}} = -\bar{\ell}_{Lj}^{0} \phi_{a} Y_{Ljk}^{\bar{a}} e_{Rk}^{0} - \bar{\ell}_{Lj}^{0} \tilde{\phi}_{\bar{a}} \tilde{Y}_{Lj}^{a} N^{0} + h.c.$$
(3)
with the adjoint Higgs doublet $\tilde{\phi}_{\bar{a}} = \epsilon \phi_{a}^{*} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} (\phi_{a}^{+})^{*} \\ (\phi_{a}^{0})^{*} \end{pmatrix} =: \begin{pmatrix} \phi_{\bar{a}}^{0*} \\ -\phi_{\bar{a}}^{-} \end{pmatrix}$

• Majorana sector with the Majorana singlet N^0 : $D_\mu N^0 = \partial_\mu N^0$

(1)

The bare GNM has additional parameters (compared to the "original" SM)

- the (complex) singlet Majorana mass term M_R
- parameters in the Higgs sector like a general 2HDM see [H-ON]
 - we use the Higgs basis: it fixes where the vev sits

 $\ast\,$ distinguishes the neutrino couplings between seesaw / loop

• the neutrino Yukawa coupling of the first Higgs doublet

 $(Y_N^{(1)})_j := \tilde{Y}_{Lj}^1 = \frac{\sqrt{2}}{v} (M_D)_j \dots$ the "Dirac mass" term

- is responsible for the seesaw: $y^2 = \sum_j |(Y_N^{(1)})_j|^2 = \frac{2m_s m_4}{v^2}$ (4)

- the Yukawa couplings of the second Higgs doublet $(Y_N^{(2)})_j := \tilde{Y}_{Lj}^2$ to lepton doublets and neutral fermionic singlet N_R - is essential for the loop mass \Rightarrow we have a general 2HDM $(Y_E^{(2)})_{jk} := Y_{Ljk}^2$ to lepton doublets and charged lepton singlets ℓ_{Rj}
 - is not restricted by neutrino data at one loop

The GNM tree level for the neutral fermions

- the Yukawa coupling $(Y_N^{(1)})_j$ mixes the neutral leptons ν_j with N_R
- the mixing gives a $(3+1) \times (3+1)$ symmetric mass matrix

$$M_{\nu} = \begin{pmatrix} M_L & M_D^{\top} \\ M_D & M_R \end{pmatrix} \quad \text{with} \quad \begin{array}{l} M_L = 0_{3\times3} \\ M_D^{\top} = \frac{v}{\sqrt{2}} Y_N^{(1)} \end{array} \tag{5}$$

- M_{ν} has rank 2 \Rightarrow only two masses are non-zero

• diagonalizing M_{ν}

 $U_{(\nu)}^{\dagger}M_{\nu} = \operatorname{diag}(m_{o}="zero", m_{t}="third", m_{s}="seesaw", m_{4})U_{(\nu)}^{\top} =: \widehat{m}U_{(\nu)}^{\top} \quad (6)$ with $m_{o} = m_{t} = 0$ by the unitary matrix

 $U_{(\nu)} = \begin{pmatrix} u_{eo} & u_{et} & cu_{es} & -isu_{es} \\ u_{\mu o} & u_{\mu t} & cu_{\mu s} & -isu_{\mu s} \\ u_{\tau o} & u_{\tau t} & cu_{\tau s} & -isu_{\tau s} \\ 0 & 0 & -is & c \end{pmatrix} \quad \text{where} \quad \begin{aligned} c^2 &= \frac{m_4}{m_4 + m_s} \\ s^2 &= \frac{m_s}{m_4 + m_s} \end{aligned} \tag{7}$

- with $u_{k\alpha}$ being a unitary 3×3 -matrix

The GNM tree level for the neutral fermions

• from
$$U_{(\nu)}^{\dagger} M_{\nu} = \hat{m} U_{(\nu)}^{\top}$$
 and $(Y_N^{(1)})_k = \frac{\sqrt{2}}{v} (M_D^{\top})_k$ we get
 $u_{ko}^* (Y_N^{(1)})_k = u_{kt}^* (Y_N^{(1)})_k = 0$
(8)

- the two tree level massless "neutrinos" $\nu'_{o,t}$ are degenerate
- use the second Higgs coupling $(Y_N^{(2)})_k$ to distinguish them:

$$u_{ko}^*(Y_N^{(2)})_k = 0$$
 and $u_{kt}^*(Y_N^{(2)})_k =: d \neq 0$ (9)

⇒ parametrize the Yukawa couplings as

$$(Y_N^{(1)})_k = i y u_{ks} \qquad (Y_N^{(2)})_k := d u_{kt} + i d' u_{ks}$$
(10)

 \Rightarrow we can choose a basis for the neutrinos with simple Yukawas

- where the neutrino ν_o' does not couple to Higgses

 $\ast~$ with a 3HDM we could not guarantee the last feature

At one loop the GNM generates a loop induced mass $m_t \propto d^2$

determining the parameters of the GNM at tree level

- we can use physical masses and couplings
 - for the Higgs sector
 - \ast Higgs masses m_h , m_H , m_A , m_{H^\pm} and Higgs-Gauge couplings
 - for the neutrino sector (i.e. m_4 and $(Y_N^{(a)})_k$)
 - $\ast\,$ neutrino mixing matrix $U_{\rm PMNS}$
 - $*\,$ neutrino mass differences $\Delta m^2_{\rm atm}$ and $\Delta m^2_{\rm sol}$
 - **!!** but we have only a single mass difference at tree level:

$$\Delta m_{so}^2 - \Delta m_{st}^2 = \Delta m_{to}^2 = 0 \quad \text{since} \quad m_o = m_t = 0 \tag{11}$$

inconsistent !

 \Rightarrow we need the one-loop level to determine parameters

Including one-loop predictions:

- renormalizing a Lagrangian expressed in mass eigenstates
 - needs a counter term $\delta^{ct}m$ for each non vanishing mass m
 - * we have $m_3 > 0$ already at tree level . . .

"Trick" of Grimus and Lavoura

[G-L] W. Grimus and L. Lavoura, JHEP **0011** (2000) 042 [arXiv:hep-ph/0008179].

- renormalize the Lagrangian expressed in interaction eigenstates
 - \Rightarrow the counter term structure is simpler
- reduce the problem to the "light" neutrinos
 - get an effective 1-loop improved 3×3 -mass matrix as a function of the model parameters
 - * since the matrix is singular, it can be further reduced to a 2 \times 2 matrix $\hat{\Sigma}$
 - the singular values are the light neutrino masses
 - * in general this involves solving a 4th order equation

neutrino mass eigenstates from the Grimus-Lavoura approximation

- the ''heavy'' state $u_4'' \sim
 u_4'$ with mass m_4 was ''integrated out''
- the massless state $\nu_o'' = \nu_o'$ with mass $m_o = 0$ was left untouched
 - since it does not couple to any Higgs
- the tree level states $\nu'_{t,s}$ were mixed into one-loop mass eigenstates $\nu''_{2,3}$
 - the masses m_t and m_s can be determined from the measured mass differences

$$\Delta m_{\rm sol}^2 = \Delta m_{21}^2$$
 and $\Delta m_{\rm atm}^2 \approx |\Delta m_{31}^2|$ (12)

[SoNO2018] P. F. de Salas et al., Phys. Lett. B 782 (2018) 633

- one has to be careful with normal or inverted hierarchy: $m_t \stackrel{!}{<} m_s$

• the transformation chain: [DGKKS2022] V. Dūdėnas et al., JHEP 09 (2022) 174

$$\begin{pmatrix} 0_{3\times3}^{0\ell} & \frac{v}{\sqrt{2}}Y^{(1)} \\ \frac{v}{\sqrt{2}}Y^{(1)T} & M \end{pmatrix} \xrightarrow{\tilde{V}} \begin{pmatrix} 0^{1\ell} & 0^{1\ell} & 0^{1\ell} & 0^{1\ell} \\ 0^{1\ell} & 0^{0\ell} & 0^{0\ell} & 0^{0\ell} \\ 0^{1\ell} & 0^{0\ell} & 0^{0\ell} & i\frac{vy}{\sqrt{2}} \\ 0^{1\ell} & 0^{0\ell} & i\frac{vy}{\sqrt{2}} & M \end{pmatrix} \xrightarrow{\tilde{S}} \begin{pmatrix} 0^{1\ell} & 0^{1\ell} & 0^{1\ell} \\ 0^{1\ell} & \hat{\Sigma} & 0^{1\ell} \\ 0^{1\ell} & 0^{1\ell} & 0^{1\ell} \\ 0^{1\ell} & 0^{1\ell} & 0^{1\ell} & m_4 + 0^{1\ell} \end{pmatrix} \xrightarrow{\tilde{R}} \hat{m}$$

$$\begin{matrix} \parallel \\ M_{\nu}^F \\ \nu_{\alpha} := \{\nu_i, N\} \\ Y^{(i)} & Y^{(i')} \end{pmatrix} \xrightarrow{\nu_{\alpha}'} \\ Y^{(i')} & Y^{(i')} \end{pmatrix} \xrightarrow{\nu_{\alpha}'} X^{(i')}$$

determining Lagrangian parameters

values for the seesaw

• the physical light masses are determined (here in normal hierarchy)

$$m_o = m_1 = 0$$
, $m_2 = \sqrt{\Delta m_{sol}^2}$, $m_3 = \sqrt{\Delta m_{atm}^2}$ (13)

- but m_4 is a free parameter
- implementing this model in FlexibleSUSY exhibits an instability:
 - * one loop Higgs masses are not consistent with tree-level mass values: for stable loop level Higgs masses we are limited to $m_4 < 10^6 {
 m GeV}$
- using the seesaw relation $y^2 = \sum_j |(Y_N^{(1)})_j|^2 = \frac{2m_s m_4}{v^2}$ (4)

- we see, that y becomes a small parameter !

 \Rightarrow motivates the definition of the tiny seesaw scenario $y \le 10^{-7}$ (14)

sidestep: what happens when $y \to 0$ (i.e. $(Y_N^{(1)})_j \to 0)$?

- \mathcal{L}_{GNM} gains an additional Z_2 symmetry: $\phi_2 \leftrightarrow -\phi_2$, $N^0 \leftrightarrow -N^0$ (15)
- \Rightarrow the tiny seesaw scenario has an approximate Z_2 symmetry

features of the tiny seesaw scenario

- the seesaw scale becomes smaller than the EW scale: $m_4 < v$ (16)
- the loop inducing couplings d and |d'| become large
 - d is determined by the determinant of the 2 imes 2 mass matrix $\hat{\Sigma}$

$$m_2 m_3 = m_t m_s = \det[\hat{\Sigma}] = \frac{d^2 m_3^{\text{tree}} \Lambda}{(17)}$$

with the loop function of the neutral Higgses

$$\Lambda = \frac{m_4}{32\pi^2} [B_0(0, m_4^2, m_A^2) - B_0(0, m_4^2, m_H^2)] \propto \frac{m_4}{32\pi^2} \lambda_5$$
(18)

- |d'| is determined by a simple 2^{nd} order equation for $|\frac{d'}{d}|$
 - instead of the 4th order equation in the general case
 [DG2021] V. Dūdėnas and T. Gajdosik, Acta Phys. Polon. Supp. 15 (2022) no.2, 1
- it allows a more convenient parametrization of the Yukawa couplings
 - determined by the elements of the 2 \times 2 rotation matrix \hat{R} that diagonalizes $\hat{\Sigma}$

Parametrizing the Yukawas with the rotation matrix \hat{R}

• using Murnaghan's parameterization

$$\widehat{R} = \begin{pmatrix} R_{22} & -R_{32}^* e^{i\phi_R} \\ R_{32} & R_{22}^* e^{i\phi_R} \end{pmatrix} \text{, with } \begin{aligned} R_{22} &= \cos r \ e^{i\omega_{22}} \\ R_{32} &= \sin r \ e^{i\omega_{32}} \end{aligned}$$
(19)

we parametrize the Yukawa couplings in mass eigenstates as

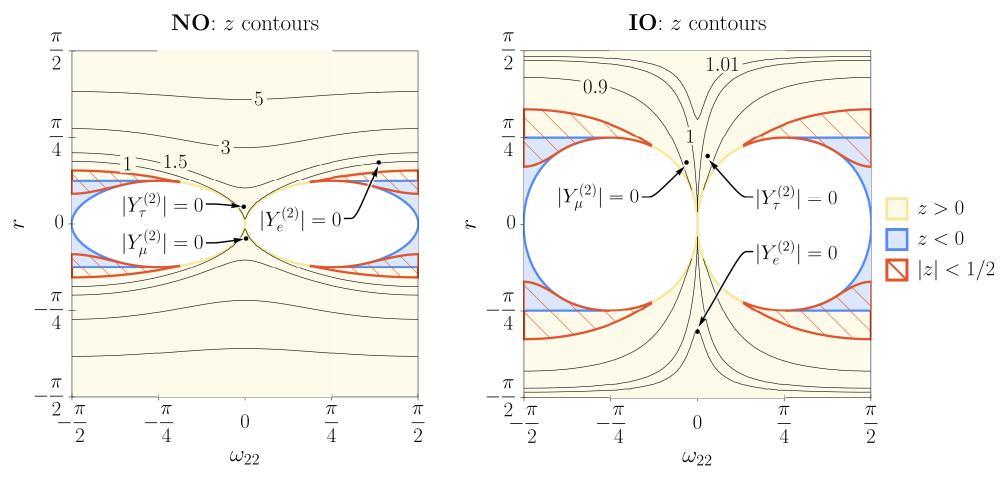
$$Y_N^{(1)} = \frac{i}{e^{i\phi_R}} \sqrt{\frac{2m_3m_4}{|z|v^2}} (0, -R_{32}, R_{22})$$
(20)

$$Y_N^{(2)} = \operatorname{sign}(\Lambda) \sqrt{\frac{m_2}{|z\Lambda|}} (0, R_{22}, t_{32}R_{32})$$
 (21)

where $t_{32} = \frac{m_3}{m_2}$ and $z = \cos^2 r \ e^{2i\omega_{22}} + t_{32}\sin^2 r \ e^{2i\omega_{32}}$ (22)

- z has to fulfill the constraint $|z|=\frac{m_3}{m_3^{\rm tree}}$ and parametrises the relative loop correction for the heaviest light neutrino
- we replace the previous free parameters by r and ω_{22}
- this rewriting simplifies the numerical input for FlexibleSUSY and gives a minimal parameter space for the model

parameter space for Lepton flavor violation



• in the white area the constraint for z, eq. (22), cannot be fulfilled

- points where the flavour Yukawa couplings vanish are shown:
 - in these points the corresponding charged lepton does not couple to H^{\pm}

Summary of the GNM

- the GNM extends the SM with a Higgs doublet and a Majorana singlet
 - the neutrinos become Majorana particles
 - * the lightest neutrino stays mass less at one loop
 - neutrino oscillations determine the neutrino Yukawa coupling
 - * allows predictions of Lepton Flavor violating processes
 - * the other possible new Yukawa couplings stay free parameters
 - a large seesaw scale causes numerical problems in FlexibleSUSY
- An approximate Z_2 symmetry defines the tiny seesaw scenario
 - motivates the suppression of the undefined (free) new Yukawas
 - stabilizes the numerical renormalization in FlexibleSUSY
 - the explicit but small breaking parameters y and λ_5 interpolate between seesaw and radiative neutrino masses
 - ⇒ the GNM can be seen as generalization of Dark matter models
 ∗ in terms of predicting Lepton Flavor violating processes

Progress in the last four years

- implementation in FlexibleSUSY is stable regarding neutrinos
 - for the large seesaw a high precision package is needed
 - * Higgses have to be taken at tree-level
 - tiny seesaw scenario solves also this problem
- the new definition for the Yukawa couplings
 - simplifies the presentation of the parameter space:
 - * clear boundaries, numerically simple
 - * no doubling of Yukawa coupling values by different parameters
 - * no reverse engineering of input parameters
- Phenomenological analysis of Lepton Flavour violating processes
 - provides limits for the Higgs potential
 - * see talk by V. Dūdenas

Plans

- Extending the Phenomenological analysis of Lepton Flavour violation
 - covering the "corners" in the Higgs potential
- fully renormalizing the model
 - see talk by S. Draukšas
 - * some success already, but not finished
- Exploring the Cosmology connection
 - lifetime of the particles in the GNM
 - could there be a Dark Matter candidate ?
 - what about Leptogenesis ?
 - * mostly for having themes for students ...
- ? What changes if we get a third Higgs doublet ?

Thank you

for discussion

and comments

and of course for the conference! \bigcirc