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(1) Vilnius University, Institute of Theoretical Physics and Astronomy
darius.jurciukonis@tfai.vu.lt

(2) Department of Physics, Brookhaven National Laboratory
dfontes@bnl.gov

(3) Universidade de Lisboa, Instituto Superior Técnico, CFTP
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Observables

The process Z → bb̄ yields two observable quantities, Rb and Ab.

• Rb is the hadronic branching ratio of Z to b quarks

Rb ≡
Γ(Z → bb̄)

Γ(Z → hadrons)
.

• Ab is the b-quark asymmetry

• the Z -pole forward–backward asymmetry measured at LEP-1

A
(0,b)
FB =

σ
(
e− → bF

)
− σ

(
e− → bB

)
σ (e− → bF ) + σ (e− → bB)

=
3

4
AeAb,

• the left–right forward–backward asymmetry measured by the SLD collaboration

AFB
LR (b) =

σLF + σRB − σLB − σRF

σLF + σRB + σLB + σRB
=

3

4
Ab,

where σXY = σ
(
e−X → bY

)
; e−L,R are left and right handed initial–state electrons and

bF ,B are final–state b-quarks moving in the forward and backward directions.
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Measurements

• An overall fit of many electroweak observables gives [PDG′2022]

Rfit
b = 0.21629± 0.00066 =⇒ 0.7σ above the SM,

Afit
b = 0.923± 0.020 =⇒ 0.6σ below the SM [SLD measurements].

• Extracting Ab from A0,b
FB when Ae = 0.1501± 0.0016 leads to

Ab = 0.885± 0.0017, which is 2.9σ below the SM prediction [LEP-1

measurements].

• The combined value Aaverage
b = 0.901± 0.013 deviates from the SM value by

2.6σ.

• These discrepancies in Ab could be an evidence of New Physics, but they
could also be due to a statistical fluctuation or another experimental effect in
one of asymmetries; more precise experiments are needed.
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Experiments

• A direct measurement of the Zbb̄ couplings at the
LHC is challenging because of the large backgrounds
for the process Z → bb̄.

• Lepton colliders of the next generation, the CEPC,
ILC, or FCC-ee offer great opportunities for further
studies of the Zbb̄ vertex, because they could collect
a large amount of data around the Z 0 pole.

• If its results are SM-like, a future lepton collider can
provide strong constraints on models beyond the SM.

• If the A0,b
FB discrepancy found at LEP does come from

New Physics, then any of the three next-generation
e+e− colliders will be able to rule out the SM with
more than 5σ significance [Gori,et al.′2016].

0.00 0.01 0.02 0.03
-0.002

0.000

0.002

0.004

0.006

δ gRb

δ
g
Lb

�������� �

99.9999%CL
CEPC

CEPC+

ILC

FCC-ee

current (68%CL)

current (95%CL)

0.00 0.01 0.02 0.03
-0.002

0.000

0.002

0.004

0.006

δ gRb

δ
g
Lb

�������� ��

99.9999%CL
CEPC

CEPC+

ILC

FCC-ee

current (68%CL)

current (95%CL)

Figure 3: The preferred regions in the (δgLb, δgRb) plane, given by the global fit of the
future measurements at CEPC (in cyan), CEPC+ (in blue), ILC (in red) and FCC-ee
(in black). The solid and dotted purple contours correspond to the 68% and 95% CL
constraints from the current measurements. The two panels correspond to Scenario I
and Scenario II presented in the text, and each plot shows the 99.9999% CL constraints
from different colliders with dashed contours. The green dot is the SM prediction (δgLb =
δgRb = 0).

effective Lagrangians. At dimension 6, the only operators that modifies directly the Zbb̄

couplings are (see e.g. [17,21])

OHb = i(H†
↔
DµH)(b̄Rγ

µbR) , (4.1)

OsHQ = i(H†
↔
DµH)(Q̄γµQ) , (4.2)

OtHQ = i(H†σa
↔
DµH)(Q̄γµσaQ) . (4.3)

After electroweak symmetry breaking, these operators lead to a shift in the Zbb̄ couplings:

δgLb = −(asHQ + atHQ)v2

2
, δgRb = −aHbv

2

2
, (4.4)

where aHb, a
s
HQ, a

t
HQ are the coefficients of the OHb, OsHQ, OtHQ operators, respectively

and v is the vacuum expectation value of the Higgs (v = 246 GeV). In Table 7, we present

the constraints on these operators at the several future e+e− machines, assuming that

asHQ = atHQ = aHb = 1/Λ2. Scales as large as (20− 30) TeV can be probed by the future

measurement of the Zbb̄ couplings.

Next, we pass to the analysis of specific NP frameworks that can generate some of the

operators forementioned, including two Higgs doublet models, composite Higgs models

16

Figure: The preferred regions,
given by the global fit of the
future measurements [Gori,et
al.′2016].
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The couplings

• We focus on the Zbb̄ couplings

LZbb̄ =
g

cw
Zµ b̄γ

µ (gLPL + gRPR) b.

• At tree level,

g tree
L =

s2
w

3
− 1

2
, g tree

R =
s2
w

3
.

• The Standard Model prediction is

gSM
L = −0.420875, gSM

R = 0.077362.

• In the presence of New Physics, we
write

gL = gSM
L + δgL, gR = gSM

R + δgR .

• The couplings gL,R are related to Ab

Ab =
2rb
√

1− 4µb

1− 4µb + (1 + 2µb) r 2
b

,

where rb = (gL + gR)/(gL − gR) and

µb =
[
mb

(
m2

Z

)]2
/

m2
Z .

• The couplings gL,R are related to Rb

Rb =
sb c

QCD cQED

sb cQCD cQED + sc + su + ss + sd
,

where cQCD and cQED are QCD and
QED radiative correction factors and

sb = (1− 6µb) (gL − gR)2 + (gL + gR)2 ,

and sc + su + ss + sd = 1.3184.
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Solutions
• We can solve the above equations for gL and gR in terms of the

experimentally measured values for Rb and Ab [DJ & Lavoura, ′2021].

solution gL gR

1fit −0.420206 0.084172
2fit −0.419934 −0.082806
3fit 0.420206 −0.084172
4fit 0.419934 0.082806

1average −0.417814 0.095496
2average −0.417504 −0.094139
3average 0.417814 −0.095496
4average 0.417504 0.094139

××

××
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• Solutions 3 and 4 have a much too large δgL and are not really experimentally
valid [Choudhury et al.′2002] therefore we discard those solutions.

• Solution 1 seems to be preferred over solution 2 because it has much smaller
|δgR |.
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The aligned 2HDM and aligned 3HDM
• The computations for solution 1

• The computations for solution 2
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A Left-Right model (LRM)

• We consider a CP-conserving left–right model i.e. a model with gauge group

SU(2)L × SU(2)R × U(1)X . The gauge coupling constant of SU(2)L is g ; the gauge

coupling constant of SU(2)R is l ; the gauge coupling constant of U(1)X is h.

• The scalar multiplets of our LRM consist of an SU(2)L doublet HL, an SU(2)R
doublet HR , and a ‘bi-doublet’–i.e., a doublet both of SU(2)L and of SU(2)R–Φ.
Thus,

HL =

(
m

n

)
, HR =

(
p

q

)
, Φ =

(
b∗ c
−a∗ d

)
, Φ̃ =

(
d∗ a
−c∗ b

)
,

where m, n, p, q, a, b, c, and d are complex Klein–Gordon fields.
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The vacuum expectation values

• The vacuum expectation values (VEVs) are

〈0 |m| 0〉 = 〈0 |p| 0〉 = 〈0 |a| 0〉 = 〈0 |c| 0〉 = 0,

〈0 |n| 0〉 = uL, 〈0 |q| 0〉 = uR , 〈0 |b| 0〉 = v1, 〈0 |d | 0〉 = v2.

Since we assume our model to be CP-conserving, uL,R and v1,2 are taken to be real.

• We expand the neutral-scalar fields about their VEVs as

n = uL +
ρL + iηL√

2
, q = uR +

ρR + iηR√
2

, b = v1 +
ρ1 + iη1√

2
, d = v2 +

ρ2 + iη2√
2

,

where ρL,R,1,2 and ηL,R,1,2 are real Klein–Gordon fields. Because of CP invariance,

the fields ρL,R,1,2 (viz. the scalars) mix among themselves, but they do not mix with

the fields ηL,R,1,2 (viz. the pseudoscalars).

• The fields a, c,m and p give charged scalars.
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The scalar potential

• The scalar potential is V = VH + VΦ + VHΦ, where

VH = {HL,HR ;µL, µL, λL, λR , λLR} ,
VΦ =

{
Φ, Φ̃;µ1, µ2, λ1, λ2, λ3, λ4

}
,

VHΦ =
{
HL,HR ,Φ, Φ̃;m1,m2, λ3L, λ3R , λ4L, λ4R , λ5L, λ4R

}
.

• The parameters λL, λR , λLR , λ1, λ2, λ3, λ4, λ3L, λ3R , λ4L, λ4R , λ5L, and λ5R are

dimensionless; the parameters m1 and m2 have mass dimension; the parameters µL,

µR , µ1, and µ2 have mass-squared dimension.

• All these parameters are real because of the assumed CP conservation.
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The Yukawa couplings

• In our simplified LRM we only consider the third generation quarks, viz. tL, bL, tR ,

and bR ; we disconsider both the lepton sector and the other two quark generations

(because of the negligible impact to the Zbb̄ couplings).

• The Yukawa couplings are given by

LYukawa = −
(

t̄L, b̄L
) (

y1Φ + y2Φ̃
)( tR

bR

)
+ H.c.,

where y1 and y2 are real because of the assumed CP invariance of the model.

• When b and d acquire real VEVs v1 and v2, respectively, upper equation produces
quark masses

mt = y1v1 + y2v2, mb = y1v2 + y2v1.
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Parameter counting

• Our left–right model has in its Lagrangian the following parameters:

• The gauge coupling constants g , l , and h.
• The parameters of the potential µi , mj , and λk .
• The Yukawa couplings y1 and y2.

This makes 24 independent real parameters.

• Since there are 24 parameters, we must use as input of the renormalization procedure
24 observable (measurable) quantities. The quantities at our disposal thus are:

• The electromagnetic coupling constant.
• 4 masses of the gauge bosons.
• 8 masses of the scalars.
• The masses the top and bottom quarks.
• 10 mixing angles.

This makes a total of 25 observables. There is one more observable than there are

parameters of the model. This means that there is one constraint among the 25

observables.
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Renormalization

• There are computed 32 one-loop diagrams contributing to the process Z → bb̄.

• The renormalization is done using FeynMaster [Fontes and Rom~ao.′2020].

• The UV divergences cancels after computations of the counterterms.

• Diagrams with photon and gluon’s contain IR divergences, which are eliminated by

subtracting the SM contribution (which have the same IR divergences).

• Initially, the renormalization was done in Faynman gauge, later in arbitrary gauge.

• In both cases we checked numerically finiteness of the computed couplings using

LoopTools and Collier library.
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Theoretical and experimental restrictions

• unitarity requirements,

• bounded-from-below requirements,

• vacuum stability conditions,

• experimental restrictions to the Yukawa couplings [CMS, Eur.Phys.J.C 79

(2019) 5, 421],

• heavy gauge bosons mass and mixing angle restrictions from the global fits.
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No restrictions

• The confrontation between experiment and the computed values gL and gR .
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With restrictions

• The confrontation between experiment and the computed values gL and gR .
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The masses of the new particles

• For all points Yukawa conditions are applied.

• Blue points: only UNI conditions are added additionally.

• Red points: UNI and BFB conditions are applied.

• Green points: all restrictions are applied.
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Conclusions

• The SM has a slight problem in fitting the Zbb̄ vertex, since it produces a gR
smaller than what is needed to reproduce the measured Ab.

• The LRM cannot solve this problem either (like many other models).

• An alternative solution of the gR coupling can only be achieved with an
unconstrained model.

• The constrained model gives small corrections to the Zbb̄ couplings.

• An investigation is still underway trying to explain the negative δgR .
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The End
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