

Physical and biological property comparisons of ⁴He and ³He ion beams for applicability in radiation therapy

Kristaps Paļskis (RTU, CERN)

Under the supervision of

of prof. Toms Torims (RTU) Maurizio Vretenar (CERN) prof. Joao Seco (DKFZ) Mariusz Sapinski (PSI, SEEIIST)

Background: Helium ions for particle therapy

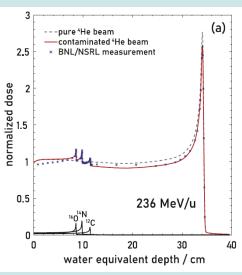
- Proving intermediate physical and biological characteristics between protons and carbon ions, helium ion therapy is returning to «novelty horizon»
- Clinically helium-4 ion beams are mainly considered

There is another stable helium isotope to consider for ion therapy: Helium-3

Background: In favour of helium-3

Helium-3 ions provide favourable characteristics from accelerator physics point-of-view due to

their charge-to-mass ratio of 2/3 compared to ½ of ⁴He:


Beam rigidity

UNIVERSITĀTE

For the same maximum range of 30 cm in water: for ³He: 260 MeV/u for ⁴He: 220 MeV/u Corresponding magnetic rigidity: for ³He: 3.74 T*m for ⁴He: 4.52 T*m Same magnetic field – 1.2 lower ring radius

Contamination at injection

For ⁴He, other ion species with q/m = ½ from the plasma source can contaminate the beam at injection (¹²C, ¹⁴N, ¹⁶O)

Background: Clinically relevant physics of ³He

With the rationale from favourable accelerator performance with the use of ³He beams, question is

How do ³He ion beam differs from ⁴He ion beam parameters in relevant physical and biological aspects for a clinical use?

The aim of this work

Linear Energy Transfer distributions Physical dose: Depth dose and lateral profiles

Neutron fluence and kinetic energy distributions

Within a simulation framework, compare ³He and ⁴He ion beams, extracting relevant physical and biological parameters for clinical use

> Biological dose: RBE distributions

The aim of this work

Linear Energy Transfer distributions Physical dose: Depth dose and lateral profiles

Neutron fluence and kinetic energy distributions

Within a simulation framework, compare ³He and ⁴He ion beams, extracting relevant physical and biological parameters for clinical use

Positron emitter distributions

Biological dose: RBE distributions Prompt gamma emissions

Methodology Main simulation parameters

- Geant4 simulation framework for unperturbed beams (no initial energy spread and contamination)
 - 10⁶ particles in water dose distribution parameter estimation
 - 10⁷ particles in skeletal muscle tissue positron emitter and prompt gamma yield estimation
- Initial energies for range of 100–150 mm in water
 - 129.8 to 180.1 MeV/u for ³He
 - 109.3 to 151.3 MeV/u for ⁴He
- Physical quantities scored:
 - Energy deposition and LET by particle type
 - Kinetic energy by particle type
 - Neutron fluence and kinetic energy
 - Positron emitter isotope yields and spatial distributions
 - Vertex data of prompt gamma emissions + corresponding process and parent particles

Methodology Main calculational aspects

Physical dose distribution calculations

Physical dose based spread-out Bragg peak optimization (*superposition of pristine Bragg peaks*)

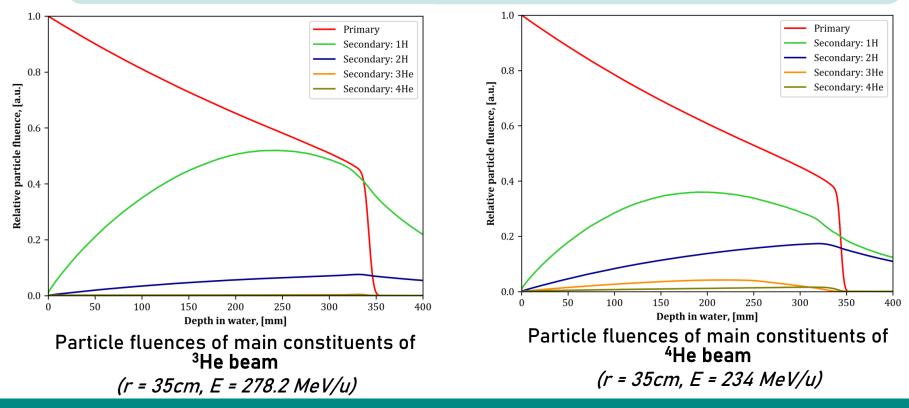
Relative Biological Effectiveness calculations, biologically driven optimization

Relative Biological Effectiveness calculation with Microdosimetric Kinetic model

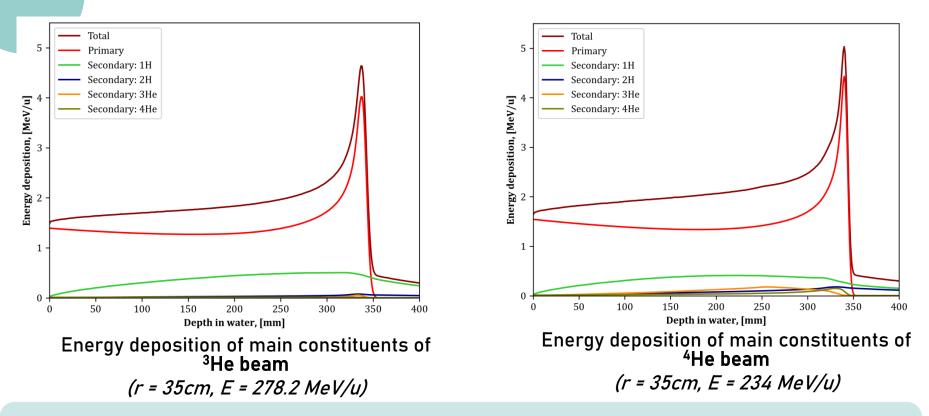
Biologically driven spread-out Bragg peak optimization

Positron emitters signal estimation

Yield distribution conversion into integrated activity Positron range considerations for activity distribution

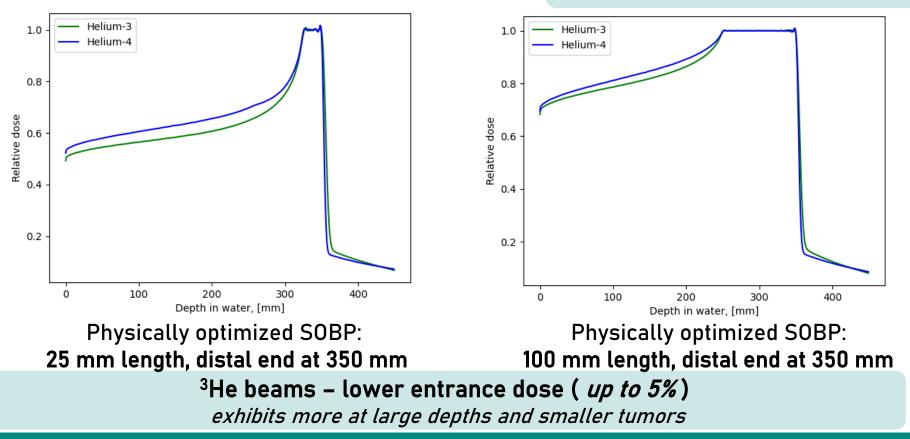

Prompt gamma signal estimation

Prompt gamma energy spectrum and emmision depth distribution Prompt gamma spectrum separation by physical interaction processes

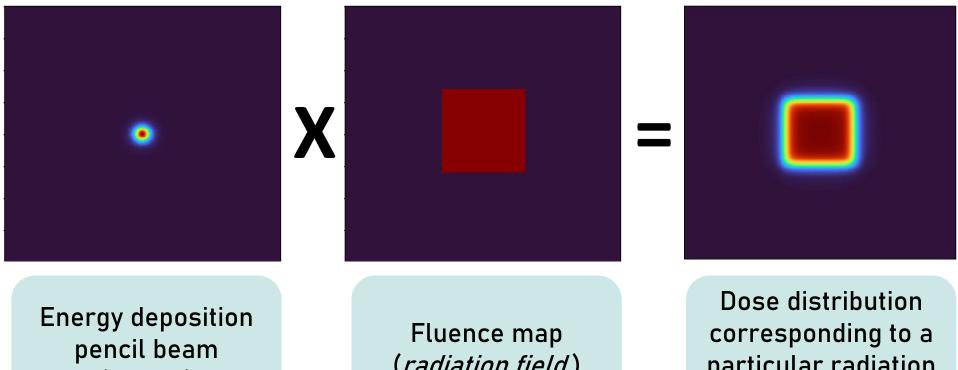

Results Constituents of the *mixed beam*

Undergoing matter interactions, particle beam is *mixed* – primary helium ions and various secondaries (*projectile fragmentation and target fragmentation*)

Results Constituents of the *mixed beam*



⁴He ion beams *undergo* more nuclear reactions, resulting in steeper decrease of primary fluence and higher contributions of secondary fragments

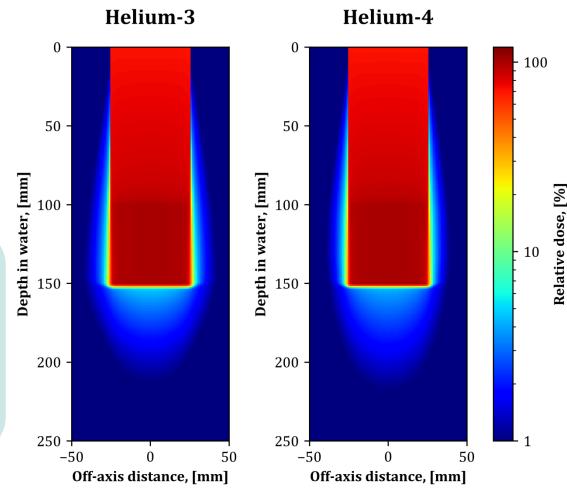

Results Physical SOBPs: IDD approach

IDD – *integrated depth dose, radially integrated all deposition contributions*

Results **Physical SOBPs: PB convolution**

(kernel)

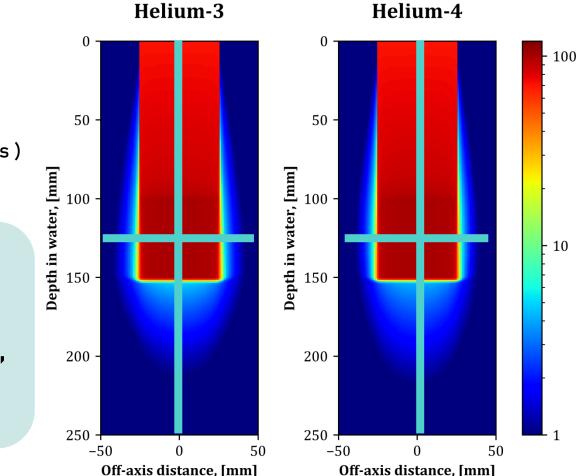
(radiation field)


particular radiation field

Results Physical SOBPs: 2.5D distribution

Dose distribution map for a simulated **5x5x5** tumor at 15 cm distal depth (*left* – ³He ions, *right* – ⁴He ions)

³He beams exhibit broader lateral distribution due to scattering. Fragmentation tail narrower, more «forward-peaked» for 4He ion beams

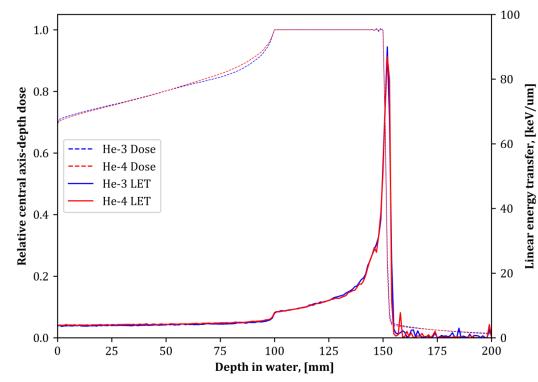


Results Physical SOBPs: 2.5D distribution

Dose distribution map for a simulated **5x5x5** tumor at 15 cm distal depth (*left* – ³He ions, *right* – ⁴He ions)

³He beams exhibit broader lateral distribution due to scattering. Fragmentation tail narrower, more «forward-peaked» for 4He ion beams

Relative dose, [%]



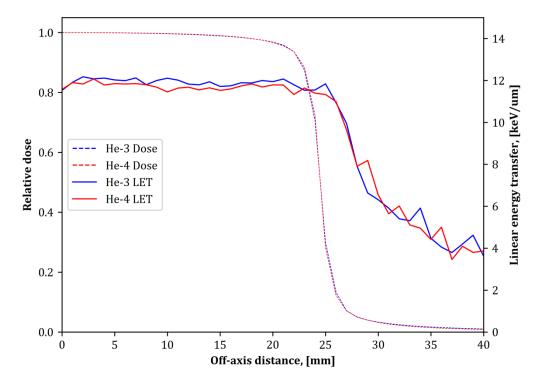
Central axis depth dose and corresponding LET distribution

³He beams exhibit lower central axis entrance dose

UNIVERSITĀTE

Linear energy transfer values are comparable, <u>BUT</u> <u>heavily affected by initial beam</u> <u>conditions (realistic beam)</u> (typically – higher for ⁴He)

Central axis depth distribution and corresponding LET distribution comparison for a simulated 5x5x5 tumor irradiation



Results Lateral profiles and LET

Lateral dose profile and corresponding LET distribution d=125 mm

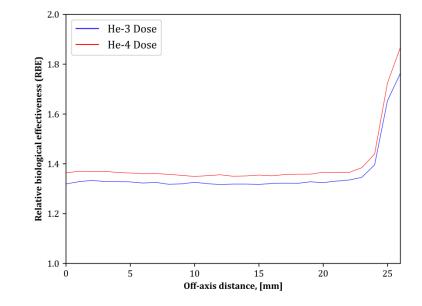
⁴He beams exhibit *sharper* dose profile, comparing penumbras (*80%-20% dose level*) calculated at 125mm depth: for ³He beam: **2.7 mm** for ⁴He beam: **2.4 mm**

Linear energy transfer values are comparable,

Lateral dose profile and corresponding LET distribution comparison for a simulated 5x5x5 tumor irradiation

Results Relative biological effectiveness

RBE – ratio of physical dose levels needed to deliver same cellular survival level for a particular radiation type compared to reference radiation (conventional gamma photons)

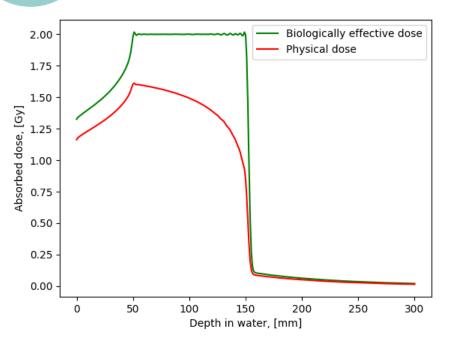

Kinetic energy distributions by particle type, weighed by deposited energy Kinetic energy distribution into dose-mean specific energy (*track structure model*) RBE value by Microdosimetric Kinetic Model, using HSG cell line parameters (*most common*)

Results Relative biological effectiveness

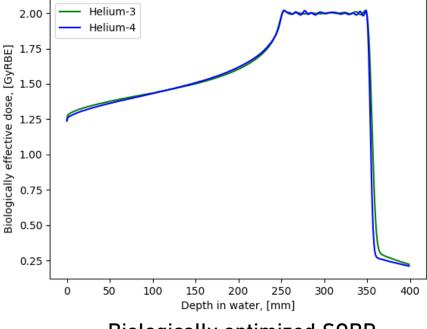
2.6 (1) Second (1) Se

Central axis RBE distribution

Lateral RBE distribution at depth of 125 mm


Central axis RBE distribution for a simulated 5x5x5 tumor irradiation

Lateral profile RBE distribution at 125 mm for a simulated 5x5x5 tumor irradiation


⁴He beams exhibit comparable RBE in entrance channel, while ~ 5% larger RBE in SOBP region

Results Biologically driven optimization

Biologically optimized SOBP: physical and biologically effective dose distributions

Biologically optimized SOBP comparison for ³He and ⁴He beams

Biologically optimized dose distributions show negligible level of differences

Results Treatment range verification

lons – main advantage

lons *stop,* delivering a Bragg peak

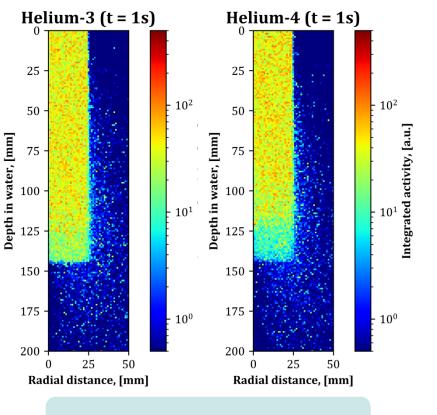
Ions – main challenge

lons *stop... where is the Bragg peak? A priori –* dual energy CT, ion radiography *On-line –* **range verification**

POSITRON EMITTERS

Two main methods

Nuclear reactions resulting in positron emitting nuclei, registration of the annihilation gammas (PET)


PROMPT GAMMAS

Nuclear reactions resulting in nuclei in excited states that relax by gamma emissions in ps range

Integrated over 1 minute

RIGAS

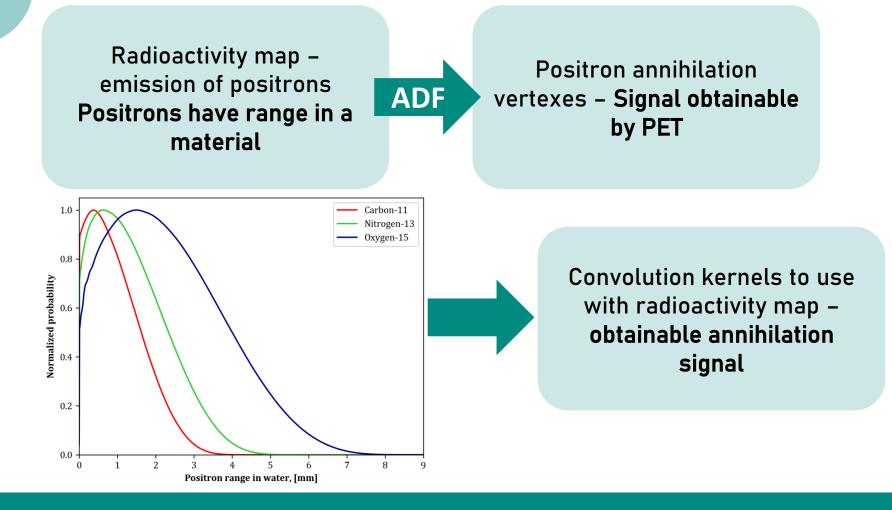
UNIVERSITĀTE

Integrated over 1 second

Positron emitter distributions

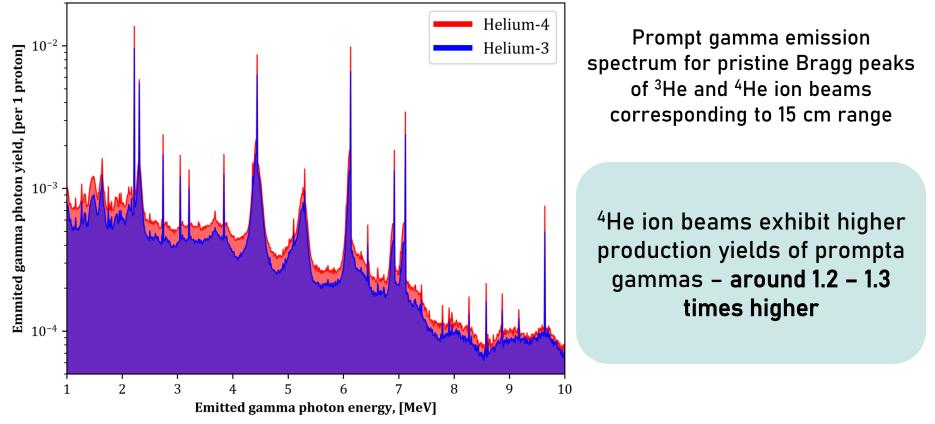
³He ion beams exhibit 5 – 10 % higher positron emitter production yields per incident particle

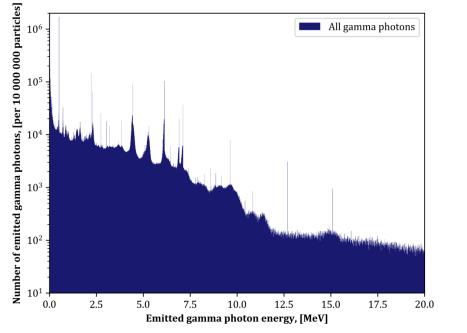
UNIVERSITĀTE


³He ion beams exhibit lesser signal fall-off at distal end of the Bragg peak, owing to better correlation with dose distribution – **important factor for range verification** Main signal components Long lived

Positron emitter	T _{1/2}
¹⁵ O	122 s
¹³ N	9.97 min
¹¹ C	20.34 min

Main signal components Short lived	
Positron emitter	T _{1/2}
¹² N	11 ms
⁸ B	772 ms


Results *«To do»:* ADF introduction


Results Prompt gamma emission spectrum

Spectra of emmited prompt gamma photons

Results Spectrum components

³He ion beam prompt gamma emission spectrum

⁴He ion beam prompt gamma emission spectrum

12.5

15.0

17.5

20.0

10.0

Emitted gamma photon energy, [MeV]

All gamma photons

2nd CERN Baltic conference October 11th 2022, Vilnius

Number of emitted gamma photons, [per 10 000 000 particles]

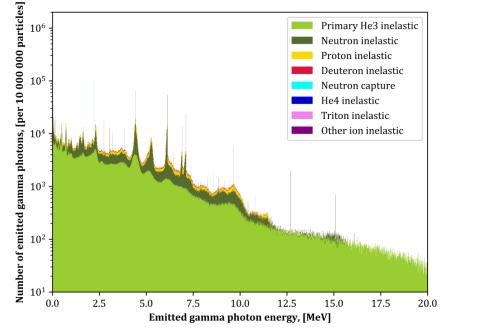
106

 10^{5}

 10^{3}

 10^{2}

 $10^{1} + 0.0$


2.5

5.0

7.5

Results Spectrum components

³He ion beam prompt gamma emission spectrum

⁴He ion beam prompt gamma emission spectrum

12.5

15.0

17.5

20.0

10.0

Emitted gamma photon energy, [MeV]

7.5

Primary He4 inelastic

Neutron inelastic

Deuteron inelastic

Neutron capture

He3 inelastic

Triton inelastic

Other ion inelastic

Proton inelastic

2nd CERN Baltic conference October 11th 2022, Vilnius

Number of emitted gamma photons, [per 10 000 000 particles]

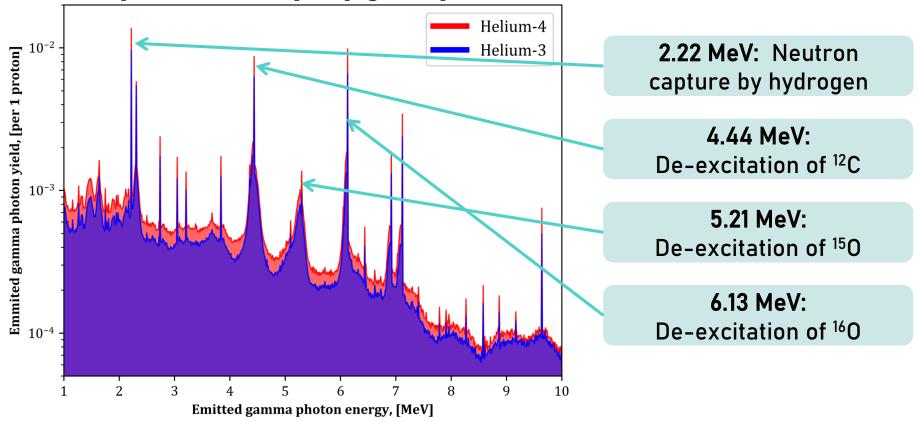
 10^{6}

 10^{5}

10

 10^{2}

0.0

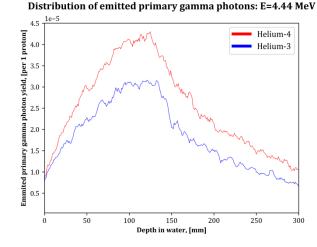

2.5

5.0

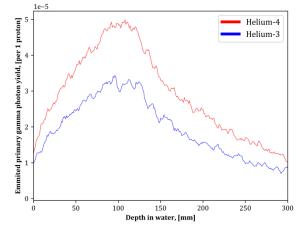
Results Emission depth distributions

Spectra of emmited prompt gamma photons

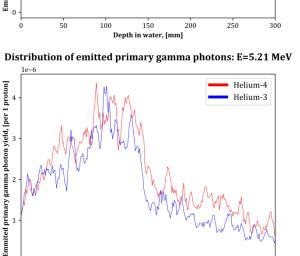
0


0

50


100

Results Emission depth distributions


Distribution of emitted primary gamma photons: E=2.22 MeV

Distribution of emitted primary gamma photons: E=6.13 MeV

Based on PG emission depth distributions, PG detection at 4.44 or 6.13 MeV would be favourable due to higher signal and sharper fall-off

150

Depth in water, [mm]

200

250

300

Conclusions

- ⁴He ion beams exhibit more favourable clinical characteristics in terms of RBE and lateral dose distribution due to scattering
- ³He ion beams provide favourable physical dose distributions with decreased entrance dose, though this becomes neglible if biological optimization of dose distribution is performed
- In terms of applicability for range verification, ³He ion beams provide higher signal level for PET methodology, while ⁴He ion beams – for prompt gamma detection. Though experimental validation of this aspect would be required.

Conclusions

From accelerator physics point-of-view, the gain of creating smaller sized, more compact synchrotron ring for ³He ion beams could be justified with the medical physics findings of this study.

Thank you for your attention!