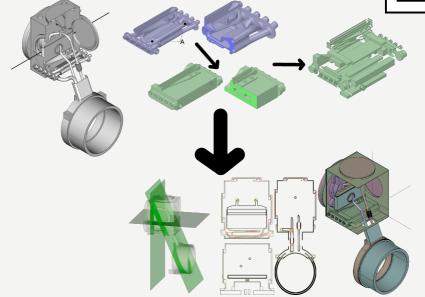
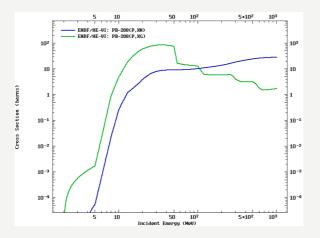


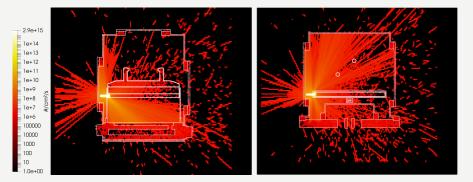
MCNP calculations of the high-power LIEBE molten target at CERN for the production of radioisotopes

B. Togobickij, G. Stankūnas, M. Povilaitis, A. Slavickas

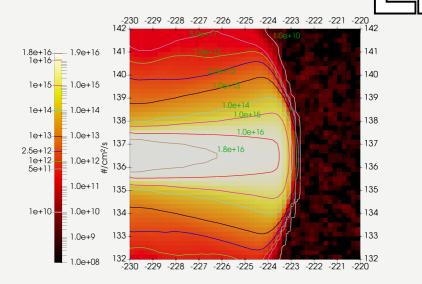

The LIEBE target

- Proton beam (1) hits the irradiation chamber (2).
- 2 Irradiated liquid lead-bismuth eutectic (LBE) falls through a grid fragmenting it into 0.4 mm diameter droplets, which fall along the height of diffusion chamber (3).
- 3 Heat, deposited to the LBE by the proton beam, is removed in the water-cooled heat-exchanger (4).
- 4 LBE goes through the EM pump channel (5) back to the irradiation chamber (2).

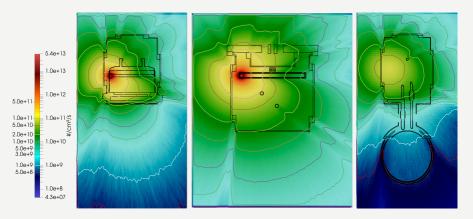

CAD to MCNP input conversion



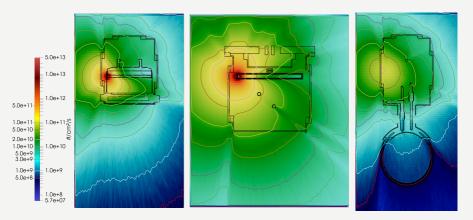
Nuclear reactions such as ²⁰⁸Pb(p,n) or ²⁰⁸Pb(p,gamma) have cross sections above 10 barns, so the reaction produces a broad spectrum of neutrons and gamma rays.

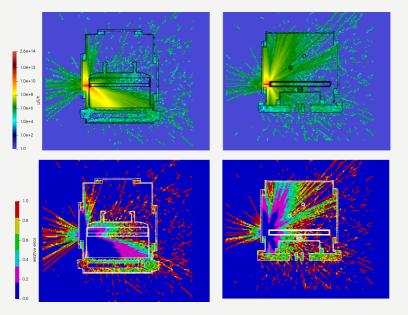


- MCNP Monte Carlo code, FENDL-3.1 cross-section data library, $10^9 \ \rm number \ of \ histories$
- 1 mm radii 70 MeV 100 μA proton beam.

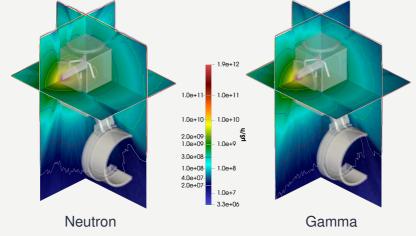


Proton flux in the target



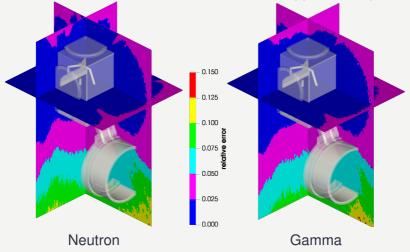

Gamma flux

Proton induced dose rate map



Neutron and gamma induced dose rate distribution

Gamma and neutron dose rates there reach almost 2 MSv/h each. However, around the target dose rates are much lower, around 361 Sv/h for gamma rays and 214 Sv/h for neutrons.



October 12, 2022 MCNP calculations of the high-power LIEBE molten target at CERN for the production of radioisotopes 10/13

Neutron and gamma induced dose rate relative error

The maximum error for the dose rates reaches approximately 22 %.

October 12, 2022 MCNP calculations of the high-power LIEBE molten target at CERN for the production of radioisotopes 11/13

- The successful conversion of the LIEBE target to an accurate MCNP model.
- Successful MCNP simulations of the proton induced neutron and gamma flux around the target.
- From the distributions the maximum dose around the target is roughly 361 Sv/h for gamma rays and 214 Sv/h for neutrons. The monoenergetic 70 MeV 100 μ A proton beam penetrates roughly 7 mm deep in to the liquid eutectic lead bismuth.
- Obtained neutron distributions allow us to obtain the induced activities in the LIEBE target.
- Based on the obtained fluxes and dose rate maps further changes to the LIEBE target can be evaluated.

Future work

- Corrections to the MCNP input.
- Distributions at different proton beam energies and different target materials.

Thank you for your attention Questions?