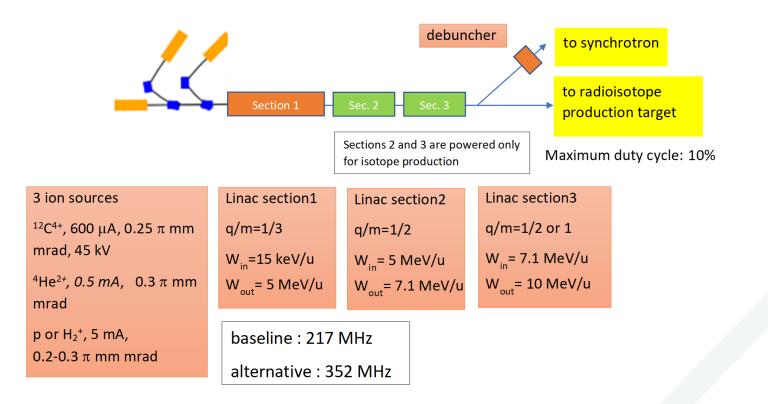


Design of DTL for Acceleration of Ions with charge-to-mass Ratio of 1/2 with a Potential Production of Radioisotopes

Lazar Nikitovic

12.10.2022


Contents

- Introduction
- DTL Design Requirements
- DTL Accelerating Structure
- Methodology
- Case Study
- Conclusions and Future Perspectives

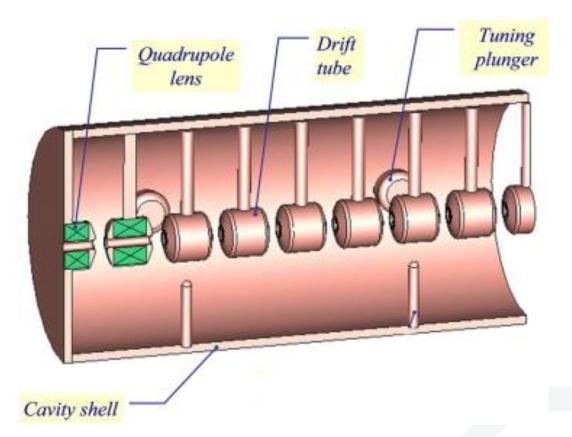
Introduction

- WP 7.4 of Heavy Ion Therapy Research and Integration (HITRIPLUS) project Linac injector design (Advanced conceptual design of an optimised linac injector for multiple ions at 10 MeV/u)¹;
- Design of the Drifting Tube Linac (DTL) accelerating structure for acceleration of multiple type of ions, using Electromagnetic (EM) simulation software;
- Multiple cases were considered in order to achieve the best solution;

WP7.4 Requirements of HITRIplus

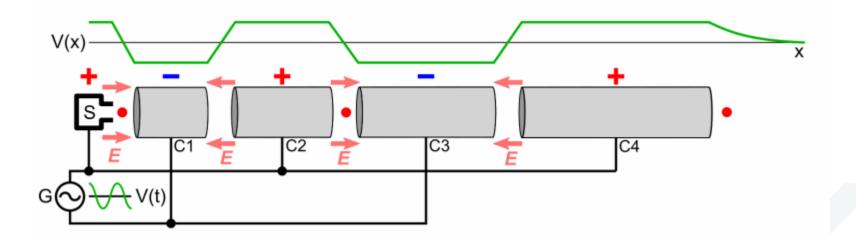
DTL Design Requirements

- HITRIPLUS project requirements for DTL design are as follow:
 - Overall LINAC length shall not exceed 10 m implies total DTL length in range of 5.5 m;
 - Output energy of DTL structure shall be 10 MeV/u;
 - DTL structure shall have two tanks preferably one for acceleration of ions with q/m = 1/2 and another for ions with q/m = 1;
 - Preferable energy between two tanks is 7 MeV/u production of ²¹¹At (Astatine), which is one of the most promising alpha-emitters for targeted cancer therapy;


DTL Acceleration Structure

Necessary accelerator structure for acceleration of heavy ions is DTL;

- 3 most popular DTL structures are:
 - Widerøe DTL;
 - Alvarez DTL;
 - H-mode DTL;


DTL Acceleration Structure

Longitudinal cross-section of DTL accelerating structure¹;

DTL Acceleration Structure

Working principle of the Widerøe DTL accelerating structure¹;

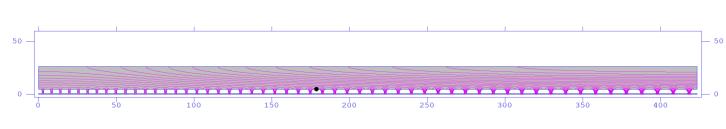
Methodology

- EM field distributions and accelerator's figures of merit are obtained with Poisson Superfish Codes;
- The simulation methodology has been benchmarked with the existing LINAC4;
- Next to given HITRIplus requirements for DTL design, the following input data are taken as fixed parameters:
 - Frequency: 352.2 MHz
 - Input energy: 2 MeV/u

Considered Cases - INPUTS

• Four cases have been taken into consideration for a design of DTL accelerating structure:

Case	Tank 1		Tank 2	
	q/m	T _{out}	q/m	T _{out}
1	1/2	7 MeV/u	1	10 MeV
2	1⁄2	7 MeV/u	1/2	10 MeV/u
3	1/2	5 MeV/u	1	10 MeV
4	1⁄2	5 MeV/u	1/2	10 MeV/u


Considered Cases - OUTPUTS

• Comparison of four considered cases regarding HITRIplus project requirements:

Casa	DTI longth	Tout	Accelerated ions		TANK1
Case	DTL length		Tank 1	Tank 2	T_{out}^{TANK1}
1	5.35 m	9.91 MeV/u	⁴ He ²⁺ , H ⁺	H+	7.04 MeV/u

The WINNER is <u>1st case</u>!

Results of 1st Case

Figure 1: Tank 1 of DTL structure for 1st case

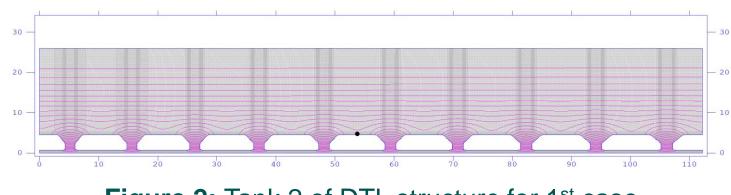


Figure 2: Tank 2 of DTL structure for 1st case

	DTL structure	Units
Input energy	2	MeV/u
RF frequency	352.2	MHz
Beam current during pulse	5	mA
Total RF power	⁴ He ²⁺ : 613.64 H ⁺ : 326.96	kW
Aperture/DT diameter	15/90	mm

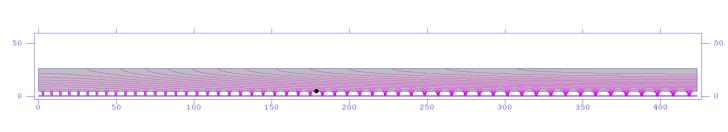
	Tank 1	Tank 2	Units
Output energy	7.04	9.91	MeV/u
Length	4.23	1.12	m
Cells per tank	54	10	-
Effective shunt impedance ZT ²	51.63	60.05	MΩ/m
Q-value Q_0	49358.08	49760.08	-
Nominal tank voltage V ₀ T	⁴ He ²⁺ : 11.1 H ⁺ : 5.55	⁴ He ²⁺ : - H ⁺ : 3.14	MV
Beam power	⁴ He ²⁺ : 50.4 H ⁺ : 25.2	⁴ He ²⁺ : - H ⁺ : 14.35	kW

Conclusions

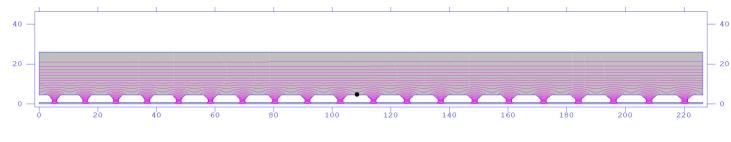
- Successful design of the DTL accelerating structure for acceleration of multiple type of ions, using EM simulation software Poisson Superfish Codes;
- Four design cases were considered, and the most favourable one was chosen for further studies;
- The most favourable design case has fulfilled all requirement from WP7.4 of HITRIPlus project;

Future Perspectives

- 1st case DTL structure will be designed in 3D EM simulation software (e.g., CST Studio Suite);
- Design of DTL tank which will be able to accelerate ions with charge-to-mass ratio of 1/3 both in Poisson Superfish and CST Studio Suite;
- Implementation of DTL structure for acceleration of ions with q/m=1/3 with 1st case DTL structure previously presented;


Thank you for your attention!

Riga Technical University



Riga Technical University

Results of 2nd Case

Figure 3: Tank 1 of DTL structure for 2nd case

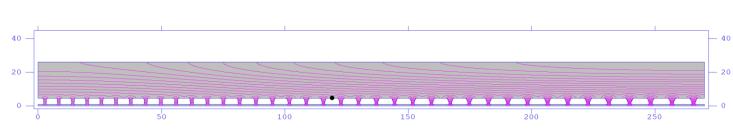
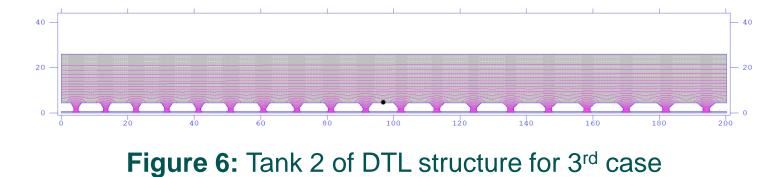


Figure 4: Tank 2 of DTL structure for 2nd case


	DTL structure	Units
Input energy	2	MeV/u
RF frequency	352.2	MHz
Beam current during pulse	5	mA
Total RF power	⁴ He ²⁺ : 914.39 H ⁺ : 248.45	kW
Aperture/DT diameter	15/90	mm

	Tank 1	Tank 2	Units
Output energy	7.04	9.94	MeV/u
Length	4.23	2.26	m
Cells per tank	54	20	-
Effective shunt impedance ZT ²	51.63	65.44	MΩ/m
Q-value Q ₀	49358.08	54153.9	-
Nominal tank voltage V ₀ T	⁴ He ²⁺ : 11.1 H ⁺ : 5.55	⁴ He ²⁺ : 6.34 H ⁺ : 3.17	MV
Beam power	⁴ He ²⁺ : 50.4 H ⁺ : 25.2	⁴ He ²⁺ : 29 H ⁺ : 14.5	kW

Results of 3rd Case

Figure 5: Tank 1 of DTL structure for 3rd case

	DTL structure	Units
Input energy	2	MeV/u
RF frequency	352.2	MHz
Beam current during pulse	5	mA
Total RF power	⁴ He ²⁺ : 396.46 H ⁺ : 378.14	kW
Aperture/DT diameter	15/90	mm

	Tank 1	Tank 2	Units
Output energy	5.11	10.2	MeV/u
Length	2.7	2	m
Cells per tank	38	19	-
Effective shunt impedance ZT ²	48.62	62.93	MΩ/m
Q-value Q_0	48681.67	53068.03	-
Nominal tank voltage V ₀ T	⁴ He ²⁺ : 6.93 H ⁺ : 3.46	⁴ He ²⁺ : - H ⁺ : 5.56	MV
Beam power	⁴ He ²⁺ : 31.1 H ⁺ : 15.55	⁴ He ²⁺ : - H ⁺ : 25.45	kW

Results of 4th Case

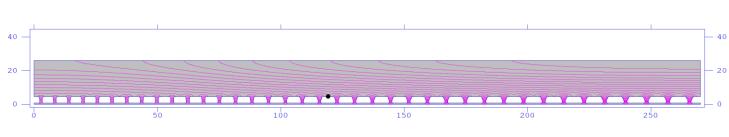
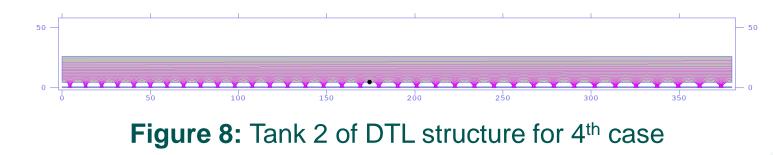



Figure 7: Tank 1 of DTL structure for 4th case

	DTL structure	Units
Input energy	2	MeV/u
RF frequency	352.2	MHz
Beam current during pulse	5	mA
Total RF power	⁴ He ²⁺ : 890.13 H ⁺ : 242.38	kW
Aperture/DT diameter	15/90	mm

40

	Tank 1	Tank 2	Units
Output energy	5.11	9.94	MeV/u
Length	2.7	3.79	Μ
Cells per tank	38	36	-
Effective shunt impedance ZT ²	48.62	65.93	MΩ/m
Q-value Q ₀	48681.67	55548.27	-
Nominal tank voltage V ₀ T	⁴ He ²⁺ : 6.93 H ⁺ : 3.46	⁴ He ²⁺ : 10.56 H ⁺ : 5.28	MV
Beam power	⁴ He ²⁺ : 31.1 H ⁺ : 15.55	⁴ He ²⁺ : 48.3 H ⁺ : 24.15	kW