
Systematics Handling
at ATLAS

Nils Krumnack (Iowa State University)

Nils Krumnack (Iowa State University)

Introduction
• ATLAS systematics model was developed during LS1
‣ based on run 1 experiences
‣ try to standardize+extend past mechanisms

• final corrections, scale factors, etc. are done via "CP tools"
‣ encapsulate all of our "standard" recommendations
‣ typically run during n-tuple production
‣ implement all the systematics internally
‣ provide standard interface for systematics handling

• ATLAS has many analysis frameworks
‣ all build on the CP tools
‣ each has its own systematics handling, etc.

• developed "common CP algorithms" as a common/shared solution
‣ trying to implement/develop best practices
‣ still in a (very drawn out) rollout

2

Nils Krumnack (Iowa State University)

Custom Systematics
• do not have a fixed set of systematics everybody uses:
‣ instead of just ±1σ variations can do ±5σ
• reduces statistical jitter for small systematics
‣CP tools can have multiple systematics sets
• e.g. simplified vs precision systematics
‣ can vary multiple systematics at once
• allows correlation studies
• allows special systematics approaches (e.g. toys)

• not going to discuss this here further
‣ that would be a talk in itself
‣ not necessarily used by a lot of people either

• we don’t know the systematics list until all tools are configured
‣ plus whatever special systematics handling is needed

• mostly can ignore the details for this talk
‣mainly means that the systematics list can be very custom

3

Nils Krumnack (Iowa State University)

CP Tools
• all CP tools have the same interface for systematics 

(in addition to their regular interface):

• have both affecting and recommended systematics
‣ some systematics are only for special use cases
‣ actual list of systematics depends on the tool configuration

• systematics list is list of abstract systematic names
‣ needs to be converted into ±1σ variations (or whatever desired)

• can ignore systematics interface when not using systematics
• with systematics, just set the systematics first:

‣ note that this is not reentrant…

4

SystematicSet affectingSystematics () const;

SystematicSet recommendedSystematics () const;

StatusCode applySystematicVariation (const SystematicSet& sys);

tool->applySystematicVariation (sys);

tool->doSomething (…);

Nils Krumnack (Iowa State University)

First Approach
• original idea: would have global systematics loop on each event:

• very simple and robust approach:
‣ ensures all tools are configured consistently
‣ very hard to get this wrong

• problem: redoes all work for every systematic
‣ lose all information on what is affected by which systematic

• usually done in n-tuple maker
‣ leads to creating a separate n-tuple for every systematic
‣most variables will be identical between systematics
‣ huge waste of disk space (also slower to process)

5

for (auto& sys : systematicsList) {

 for (auto& tool : toolList)

 tool->applySystematicVariation (sys);

 // do analysis for this event and systematic

}

Nils Krumnack (Iowa State University)

Scale Factor Improvements
• some analysis frameworks try to optimize this further

• have separate loops just for scale factor (SF) systematics
‣ SFs are directly added to the n-tuple
‣ SF systematics only affect that one variable
‣make separate variables instead of separate n-tuples for SF sys

• not quite as feasible for momentum systematics
‣momentum changes propagate through downstream code
‣ very tedious to do by hand

• some frameworks run scale factors on the n-tuple
‣ can be faster than reading all SF variations from disk
‣ requires "n-tuples" to be in xAOD format
‣ requires special handling/reading code for n-tuple

6

Nils Krumnack (Iowa State University)

CP Algorithms
• consolidation effort: common CP algorithms
‣ each "CP algorithm" wraps a single CP tool
‣ very modular design, multiple possibilities for optimization

• each algorithm contains its own systematics loop
‣ allows to run the minimal set of systematics for each tool
‣ only run tool for systematics that affect it, i.e.
• systematics that are implemented by the tool itself
• systematics that affect any of the tool’s inputs
‣ all systematics for that algorithm count as affecting all its outputs
‣ seems like the most aggressive optimization we can safely do

automatically

• systematics bookkeeping and event store access via "data handles"
‣ separates systematics handling from algorithmic code
‣ allowed for multiple rewrites of the systematics handling

7

Nils Krumnack (Iowa State University)

Adding Systematics

• simplified code (no return code checking, etc.)
• main differences:
‣ added a loop over systematics
‣ access muon container via data handle

• also extra initialization code, extra data members in class
• also extra properties for use during configuration
‣ usually set by special configuration handlers

• overall very similar, changes very straightforward

8

MuonCalibAlg::execute () {

 for (auto& sys : sysList.systematicsVector()) {

 calibTool->applySystematicVariation (sys);

 xAOD::MuonContainer *muons = nullptr;

 muonHandle.getCopy (muons, sys);

 for (xAOD::Muon *muon : *muons)

 calibTool->applyCorrection (*muon);

 }

}

MuonCalibAlg::execute () {

 xAOD::MuonContainer *muons = nullptr;

 evtStore().retrieve (muons, muonName);

 for (xAOD::Muon *muon : *muons)

 calibTool->applyCorrection (*muon);

}
no-sys with-sys

Nils Krumnack (Iowa State University)

Shallow Copies
• xAOD EDM has shallow copy feature:
‣ copies share data members that exist at time of copy
‣ new data members get added only to the copy

• original idea: add shallow copies for each systematic
‣ each algorithm with systematics add a new set of copies
‣ tracking systematics per object
‣ algorithms in the middle produce temporary copies

9

Muons

Muons

Muons

calibration scale factors

Nils Krumnack (Iowa State University)

Shallow Copy Problems
• problem: tracking per object is not granular enough
‣most algorithms just add/change a single variable on each object
‣ subsequent algorithms may not use that variable
• per-object tracking still forces them to use all its systematics
‣ can address some issues by ordering, but not all

• also: don’t know if a given variable was created before or after
adding a given systematic
‣ can lead to unnecessary duplication of variables in n-tuple
‣ generally needs some workarounds

• particular problems:
‣ SFs are only added to objects to add them to the n-tuple
‣ overlap removal gets affected by all object systematics and

propagates them to all objects
‣ global information is attached to EventInfo, read in many places

10

Nils Krumnack (Iowa State University)

Decoration Systematics
• allow to add systematically varied decorations/variables to objects
‣ just distinguished by name of the decoration
‣ decoration systematics tracked in addition to object systematics
‣ provides extra information to use when creating n-tuples

• still working on incorporating it everywhere
‣ easy for decorations that are read directly/stored in n-tuple
‣ selection decorations have an entire infrastructure 
⇒needs more work to change

• caveat: can’t do this for all variables
‣ some variables are build into the EDM/tools
‣ need to still use shallow copies for those
‣ not necessarily bad: it’s mostly four-momentum, etc. which are

anyways used by most/all tools

11

Nils Krumnack (Iowa State University)

Towards Run 3/4
• new common data format with all corrections included: PHYSLITE
‣ still under development
‣ does not include systematics
‣ some features like MET depend on user selection, not included

• still need to run CP tools to generate systematics, MET, etc.
‣ can run current tool chain on PHYSLITE
‣will typically generate a new n-tuple (like current workflow)

• may include some of the missing information in PHYSLITE
‣ at least enough to allow studies without using tool chain

• hope to allow running tool chain on the fly
‣ ought to be faster: read 3-4 variables to calculate N systematics
‣ need infrastructure to run inside pyroot, etc.
‣ need work to ensure this is performant

12

Nils Krumnack (Iowa State University)

Summary
• ATLAS has a fairly complex systematics model
‣ allows a fair amount of user customization
‣multiple analysis frameworks mean multiple handling strategies
‣ (slow) migration to a common framework

• very aggressive on optimizations
‣ try to save CPU time and disk space
‣ need to track per variable dependencies
‣ need to track per variable systematics

• factored out systematics handling into separate subsystem
‣ separates it (mostly) from the algorithmic code
‣ allowed for massive reworks of the systematics handling

13

