

<u>G. Mention</u>, M. Fechner, T. Lasserre, M. Cribier, Th. Mueller, D. Lhuillier, A. Letourneau, CEA / Irfu

arXiv:1101.2755 [hep-ex], PRD83, 073006 (2011)

linked to our new "improved prediction of reactor antineutrino spectra", done with Subatech group:

M. Fallot, S. Cormon, L. Giot, J. Martino, A. Porta, F. Yerma

<u>arXiv:1101.2663</u> [hep-ex], <u>PRC83, 054615 (2011)</u>

- Reactor anti-neutrino spectra
- Reactor anti-neutrino anomaly
- Consequences
- Outlook

$\boldsymbol{\nu}$ spectrum emitted by a reactor

T. A. Mueller et al., PRC83, 054615 (2011)

œ

The prediction of reactor v spectrum is the **dominant** source of **systematic** error for **single detector** reactor neutrino experiments

Electron antineutrinos emitted through decays of **Fission Products** of ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu ${}^{A}_{Z}X \longrightarrow {}^{A}_{Z+1}Y + e^{-} + \bar{\nu}_{e}$

The guts of $S_k(E)$

Complementary approaches to compute the ν flux

The New Mixed Conversion Approach

- I. **SAME** ILL e⁻ data Anchorage
 - 2. Ab-Initio: "true" distribution of β -branches reproduces >90% of ILL e⁻ data.
 - 3. Old-procedure: reduce use of effective anchorage-branches to the remaining 10%.

- About +3% normalization shift with respect to old v spectrum
- Similar result for all isotopes (²³⁵U, ²³⁹Pu, ²⁴¹Pu)
- Stringent Test Performed Origin of the bias identified

Average ~ +3% shift now independently confirmed by P. Huber: arXiv:1106.0687 although some difference in shape.

- œ
- I. Define "true" e⁻ and v spectra from reduced set of well-known branches from ENSDF nuclei data base. "Perfect knowledge" of both e and v spectra.
- Apply exact same OLD conversion procedure to true e⁻ spectrum.
- 3. Compare the converted $\boldsymbol{\nu}$ spectrum to the true one.
- 4. OLD technique gives a 3% bias compared to the true v spectrum

➡ OLD effective conversion method biases the predicted v spectrum at the level of -3% in normalization

MURE evolution code: core composition and off equilibrium effects

(Subatech Nantes)

$$S_k(E) = \sum_{fp=1}^{N_{fp}} \mathcal{A}_{fp}(T) \times S_{fp}(E)$$

Full simulation of reactor core

 → absolute prediction of isotopes inventory.

• Relative off-equilibrium effect: close to betainverse threshold, a significant fraction of the v spectrum takes weeks to reach equilibrium

 \rightarrow Sizeable correction in the v oscillation range that depends on the exact chronology of ILL data taking.

Relative change of v spectrum w.r.t. infinite irradiation time

Anti- v_e Detection: V-A Cross Section

• Theoretical predictions: our results agree with

• Inverse Beta Decay: $\bar{\nu}_e + p \rightarrow e^+ + n$

- Vogel 1984 (Phys Rev D29 p1918)
- Fayans 1985 (Sov J Nucl Phys 42)
- Vogel-Beacom 1999: "supersedes" Vogel 84 (Phys Prev D60 053003)

$$\sigma_{\rm V-A}(E_e) = \kappa \, p_e E_e (1 + \delta_{rec} + \delta_{wm} + \delta_{rad})$$

- **The pre-factor** κ (two pseudo-independent approaches)

$$\kappa = \frac{G_F^2 \cos^2(\theta_C)}{\pi} (1 + \Delta_{inner}^R)(1 + 3\lambda^2) = \frac{2\pi^2}{m_e^5 f^R \tau_n} \qquad \lambda = |\frac{g_A}{g_V}|$$

- κ 's value raised over the history, from 0.914 10⁻⁴² cm² MeV⁻² in 1981
 - Vogel/Beacom 1999 : κ = 0.952 10⁻⁴² cm² MeV⁻²
 - Our work is based on 2010 PDG τ_n : κ = 0.956 10⁻⁴² cm² MeV⁻²
 - But we anticipate 2011 κ = 0.961 10⁻⁴² cm² MeV⁻² (< τ_n > revision)

$$\sigma_f^{pred} = \int_0^\infty S_{tot}(E_\nu)\sigma_{V-A}(E_\nu)dE_\nu = \sum_k f_k \sigma_{f,k}^{pred}$$

Bugey-4 Benchmark

- Phys. Lett. B 338(1994) 383
- $\tau_n = 887.4 \text{ s}$
- "old" spectra (30 effective branches)
- no off-equilibrium corrections

10 ⁻⁴³ cm ² / fission	235	²³⁹ Pu	²⁴¹ Pu
BUGEY-4	6.39±1.9%	4.18±2.4%	5.76±2.1%
This work	6.39±1.8%	4.19±2.3%	5.73±1.9%

- Final agreement to better than 0.1% on best known ²³⁵U w.r.t. their computations
- This validates our calculation code.

The New Cross Section Per Fission

- v-flux: 235 U: +2.5%, 239 Pu +3.1%, 241 Pu +3.7%, 238 U +9.8% (σ_{f}^{pred} \checkmark)
- Off-equilibrium corrections now included $(\sigma_{f}^{\text{pred}} \checkmark)$
- Neutron lifetime decrease by a few % ($\sigma_{\rm f}^{\rm pred}$ /) $(\sigma_{\rm V-A}(E_{\nu}) \propto 1/\tau_n)$
- Slight evolution of the phase space factor ($\sigma_{f}^{pred} \rightarrow$)
- Slight evolution of the energy per fission per isotope ($\sigma_{f}^{\text{pred}} \rightarrow$)

• Burnup dependence
$$\sigma_f^{pred} = \sum_k f_k \sigma_{f,k}^{pred} \quad (\sigma_f^{pred} \rightarrow)$$
 relative effect

10 ⁻⁴³ cm ² /fission	old [3]	new	\checkmark
$\sigma^{pred}_{f,235U}$	$6.39{\pm}1.9\%$	$6.61{\pm}2.11\%$	+3.4%
$\sigma_{f,239Pu}^{pred}$	$4.19{\pm}2.4\%$	$4.34{\pm}2.45\%$	+3.6%
$\sigma_{f,238}^{pred}$	$9.21{\pm}10\%$	$10.10{\pm}8.15\%$	+9.6%
$\sigma_{f,^{241}Pu}^{pred}$	$5.73{\pm}2.1\%$	$5.97{\pm}2.15\%$	+4.2%

G. Mention et al. PRD83, 073006 (2011)

Measured neutrino rates and cross sections per fission $\,\sigma_{\rm f}$

_		Te		Baseline								
		K										
#	result	techno	τ_n (s)	^{235}U	²³⁹ Pu	²³⁸ U	²⁴¹ Pu	old	new	err(%)	$\operatorname{corr}(\%)$	L(m)
1	Bugey-4	3 He $+H_{2}$ O	888.7	0.538	0.328	0.078	0.056	0.987	0.943	3.0	3.0	15
2	ROVNO91	3 He $+$ H $_{2}$ O	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.943	5.0	5.0	15
4	Bugey-3-II	Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.948	5.1	5.0	40
5	Bugey-3-III	Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.873	14.1	5.0	95
6	Goesgen-I	³ He+LS	897	0.6198	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38
7	Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.991	6.5	6.0	45
8	Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.924	7.6	6.0	65
9	\mathbf{ILL}	³ He+LS	889	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.832	0.801	9.5	6.0	9
10	Krasn. I	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.013	0.944	5.1	4.1	33
11	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.031	0.960	20.3	4.1	92
12	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.989	0.954	4.1	4.1	57
13	SRP I	Gd-LS	887	≃1	< 0.01	< 0.01	< 0.01	0.987	0.953	3.7	3.7	18
14	SRP II	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.055	1.019	3.8	3.7	24
15	ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18
16	ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.8	18
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.8	25
19	ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18

0	Neutron lifetime											
#	result	techno	$ au_n$ (s)	^{235}U	²³⁹ Pu	²³⁸ U	²⁴¹ Pu	old	new	err(%)	$\operatorname{corr}(\%)$	L(m)
1	Bugey-4	$^{3}\text{He}+\text{H}_{2}0$	888.7	0.538	0.328	0.078	0.056	0.987	0.943	3.0	3.0	15
2	ROVNO91	$^{3}\text{He}+\text{H}_{2}0$	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.943	5.0	5.0	15
4	Bugey-3-II	Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.948	5.1	5.0	40
5	Bugey-3-III	Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.873	14.1	5.0	95
6	Goesgen-I	³ He+LS	897	0.6198	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38
7	Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.991	6.5	6.0	45
8	Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.924	7.6	6.0	65
9	ILL	³ He+LS	889	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.832	0.801	9.5	6.0	9
10	Krasn. I	³ He+PE	899	≃1	< 0.01	< 0.01	< 0.01	1.013	0.944	5.1	4.1	33
11	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.031	0.960	20.3	4.1	92
12	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.989	0.954	4.1	4.1	57
13	SRP I	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.987	0.953	3.7	3.7	18
14	SRP II	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.055	1.019	3.8	3.7	24
15	ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18
16	ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.8	18
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.8	25
19	ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18

#	result	techno	$ au_n$ (s)	²⁶⁵ U	²³⁹ Pu	²³⁸ U	241 Pt	old	new	err(%)	$\operatorname{corr}(\%)$	L(m)
1	Bugey-4	3 He $+$ H ₂ O	888.7	0.538	0.328	0.078	0.056	0.987	0.943	3.0	3.0	15
2	ROVNO91	3 He+H ₂ 0	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.943	5.0	5.0	15
4	Bugey-3-II	Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.948	5.1	5.0	40
5	Bugey-3-III	Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.873	14.1	5.0	95
6	Goesgen-I	³ He+LS	897	0.6198	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38
7	Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.991	6.5	6.0	45
8	Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.924	7.6	6.0	65
9	ILL	³ He+LS	889	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.832	0.801	9.5	6.0	9
10	Krasn. I	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.013	0.944	5.1	4.1	33
11	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.031	0.960	20.3	4.1	92
12	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.989	0.954	4.1	4.1	57
13	SRP I	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.987	0.953	3.7	3.7	18
14	SRP II	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.055	1.019	3.8	3.7	24
15	ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18
16	ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.8	18
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.8	25
19	ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18

Averaged Fuel Composition

cor

OBSERVED/PREDICTED ratios: OLD & NEW (this work)

								7	7			
#	result	techno	τ_n (s)	²³⁵ U	²³⁹ Pu	^{238}U	²⁴¹ Pu	old	new	$\operatorname{err}(\%)$	$\operatorname{corr}(\%)$	L(m)
1	Bugey-4	$^{3}\text{He}+\text{H}_{2}0$	888.7	0.538	0.328	0.078	0.056	0.987	0.943	3.0	3.0	15
2	ROVNO91	$^{3}\mathrm{He+H_{2}0}$	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.943	5.0	5.0	15
4	Bugey-3-II	Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.948	5.1	5.0	40
5	Bugey-3-III	Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.873	14.1	5.0	95
6	Goesgen-I	³ He+LS	897	0.6198	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38
7	Goesgen-II	3 He+LS	897	0.584	0.298	0.068	0.050	1.045	0.991	6.5	6.0	45
8	Goesgen-II	3 He+LS	897	0.543	0.329	0.070	0.058	0.975	0.924	7.6	6.0	65
9	\mathbf{ILL}	³ He+LS	889	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.832	0.801	9.5	6.0	9
10	Krasn. I	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.013	0.944	5.1	4.1	33
11	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.031	0.960	20.3	4.1	92
12	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.989	0.954	4.1	4.1	57
13	SRP I	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.987	0.953	3.7	3.7	18
14	SRP II	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.055	1.019	3.8	3.7	24
15	ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18
16	ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.8	18
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.8	25
19	ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18

	Total Errors Exp.+v-Spectra (%) & Correlated errors (%)											
										\rightarrow		
#	result	techno	τ_n (s)	^{235}U	²³⁹ Pu	238 U	²⁴¹ Pu	old	new	$\operatorname{err}(\%)$	$\operatorname{corr}(\%)$	L(m)
1	Bugey-4	³ He+H ₂ 0	888.7	0.538	0.328	0.078	0.056	0.987	0.943	3.0	3.0	15
2	ROVNO91	³ He+H ₂ 0	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.943	5.0	5.0	15
4	Bugey-3-II	Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.948	5.1	5.0	40
5	Bugey-3-III	Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.873	14.1	5.0	95
6	Goesgen-I	³ He+LS	897	0.6198	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38
7	Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.991	6.5	6.0	45
8	Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.924	7.6	6.0	65
9	ILL	³ He+LS	889	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.832	0.801	9.5	6.0	9
10	Krasn. I	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.013	0.944	5.1	4.1	33
11	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.031	0.960	20.3	4.1	92
12	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.989	0.954	4.1	4.1	57
13	SRP I	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.987	0.953	3.7	3.7	18
14	SRP II	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.055	1.019	3.8	3.7	24
15	ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18
16	ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.8	18
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.8	25
19	ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18

- Our guiding principles: Be conservative & stable numerically
- We correlated experiments in the following way:
 - 2% systematic on flux fully correlated over all measurements of β -spectra of ILL
- Non-flux systematic error correlations across measurements:
 - Same experiment with same technology: 100% correlated
 - ILL shares 6% correlated error with Gösgen although detector slightly different. Rest of ILL error is uncorrelated.
 - Rovno 88 integral measurements 100% corr. with Rovno 91 despite detector upgrade, but not with Rovno 88 LS data
 - Rovno 88 integral meas. 50% correlated with Bugey-4

Main pink color comes from the 2% systematic on ILL β-spectra normalization uncertainty

The experiment block correlations come from identical detector, technology or neutrino source

The reactor anti-neutrino anomaly

$$\chi^{2} = \left(r - \overrightarrow{\mathbf{R}}\right)^{T} W^{-1} \left(r - \overrightarrow{\mathbf{R}}\right)$$

Weights: $W = \Sigma_{\text{unc.}}^{2} + \Sigma_{cor.} C \Sigma_{cor.}$
with $\Sigma_{\text{unc.}}^{2} = \Sigma_{\text{tot.}}^{2} - \Sigma_{\text{cor.}}^{2}$

The synthesis of published experiments at reactor-detector

distances \leq 100 m leads to a ratio R of observed event rate to predicted rate of

 μ = 0.976 \pm 0.024 (OLD flux)

With our **NEW flux** evaluation. this ratio shifts to

 $\mu = 0.943 \pm 0.023$,

leading to a deviation from unity at 98.6% C.L.

 $\chi^2_{\rm min} = 19.6/18$

1.4

1.4

The reactor rate anomaly

- I8/I9 short baseline experiments <100m from a reactor observed a deficit of anti-v_e compared to the new prediction
- The effect is statistically significant at more 98.6%
- Effect partly due to re-evaluation of cross-section parameters, especially updated neutron lifetime, accounting for off equ. effect

• At least three alternatives:

- Our conversion calculations are wrong. Anchorage at the ILL electron data is unchanged w.r.t. old prediction.
- Bias in all short-baseline experiments near reactors : unlikely...
- New physics at short baselines, explaining a deficit of anti- v_e :
 - Oscillation towards a 4th, sterile v ?
 - a 4th oscillation mode with θ_{new} and Δm^2_{new}

The 4th neutrino hypothesis

• Absence of oscillations disfavored at 98.6% C.L.

Energy dependent information: shape distortion

CEA/Irfu

Combined Reactor Rate+Shape contours

THE GALLIUM ANOMALY

Based on Giunti & Laveder, PRD82, 053005 (2010)

Radiochemical experiments Gallex (left) & Sage (right) GALLEX (GaCl₃) and SAGE (liquid Ga) were radiochemical experiments, counting the conversion rate of ⁷¹Ga to ⁷¹Ge by (solar) neutrino capture

[cannot detect anti- v_e]

 $^{71}\text{Ga} + \nu_e \rightarrow ^{71}\text{Ge} + e^-$

• 4 calibration runs with intense (~ MCi) v_e (not anti- v_e !) sources.

- 2 runs at GALLEX with a ⁵¹Cr source (720 keV v_e emitter)
- I run at SAGE with a ⁵¹Cr source
- I run at SAGE with a 37 Ar source (810 keV v_{ρ} emitter)
- All observed a deficit of neutrino interactions compared to the expected activity.
- Our analysis:
 - Monte-Carlo simulation of GALLEX and SAGE + correlated the 2 GALLEX runs together and the 2 SAGE runs together (a bit more conservative than Giunti & Laveder PRD82 053005, 2010 to combine GALLEX & SAGE)

The Gallium anomaly

- Effect reported in C. Giunti & M. Laveder in PRD82 053005 (2010)
- Significance reduced by additional correlations in our analysis
- No-oscillation hypothesis disfavored at 97.7% C.L.

Putting it all together: reactor rates + shape + Gallium

The no-oscillation hypothesis is disfavored at 99.8% CL

IMPLICATIONS FOR $\Theta_{\rm I3}$

G. Mention, NuFact'I I

- The choice of normalization is crucial for reactor experiments looking for $\,\theta_{\,_{13}}\,$ without near detector

$\sigma_{f}^{pred,new}$: new prediction of the antineutrino fluxes

σ_{f}^{ano} : experimental cross section (best fitted mean averaged)

• A deficit observed at I-2 km can either be induced by θ_{13} induced oscillation BUT also by other explanations (experimental, biased flux, ...)

Long baseline reactor experiments

- Experiments with baselines > 500 m
- How do you normalize the expected flux, knowing the fuel composition?

in this slide assume Bugey-4 fuel comp.

If near + far detector, not an issue anymore

Use $\langle \sigma_f^{exp} \rangle = \sigma_f^{ano} = 5.39 | 0^{-43} \text{ cm}^2/\text{fission} \pm |\%|$ (?) Average over short-baseline expts.

CHOOZ

- liquid scintillator doped with Ig/I Gd 5 tons, 8.4 GW, 300 mwe
- Detector placed at 1050m for the 2 cores
- Look for an oscillation at atm. frequency

$\theta_{\rm I3}$ mixing angle sensitivity, or more...

Fuel composition typical of starting PWR – 57.1%
 ²³⁵U, 29.5% ²³⁹Pu, 7.8% ²³⁸U, 5.6% ²⁴¹Pu

Neutron lifetime used in original paper: 886.7 s Uncertainties:

Syst : 2.7% (3.3% in our work)

St-Alban

Graveline

St-Laurent Oampierre,

Paluel

hinon

Blayais Blaya

livaux 🦉

Golfech

Flamanville

Chooz

Nogent

Belleville

Cattenom

Creys Malville

Centrale à l'arrêt

Centrale à l'arrêt

Fessenh

Bugey

Tricastin

- The choice of $\sigma_{\rm f}$ changes the limit on $\theta_{\rm I3}$
- Chooz original choice was σ_{f}^{exp} from Bugey-4 with low error
 - If $\sigma_{f}^{pred,new}$ is used, limit is worse by factor of 2
 - If σ_{f}^{ano} is used with 2.7%, we obtain the original limit but which error should we associate to σ_{f}^{ano} ?

KamLAND experiment

- Reactor anti-neutrino experiment with average baseline around 180 km.
- 80% of total flux comes from reactors 140 to 210 km away.
- Sensitive to « solar » oscillation $(\theta_{12}, \Delta m_{12}^2)$

arXiv:1009.4771v2 [hep-ex]

KamLAND has some sensitivity to θ_{13} as well through the overall normalization of the spectrum

Reanalysis of KamLAND's 2010 results

arXiv:1009.4771v2 [hep-ex]

1	7	Y	N
(-	

energie atomique - energies attematives

Systematics

	Detector-related	(%)	Reactor-related (%)			
$\overline{\Delta m^2_{21}}$	Energy scale	1.8 / 1.8	$\overline{\nu}_e$ -spectra [31]	0.6 / 0.6		
Rate	Fiducial volume	1.8/2.5	$\overline{\nu}_e$ -spectra	2.4 / 2.4		
	Energy scale	1.1 / 1.3	Reactor power	2.1 / 2.1		
	$L_{cut}(E_{\rm p})$ eff.	0.7 / 0.8	Fuel composition	1.0 / 1.0		
	Cross section	0.2/0.2	Long-lived nuclei	0.3 / 0.4		
	Total	2.3/3.0	Total	3.3/3.4		

Reproduced KamLAND spectra within 1% in [1-6] MeV range

- Our interpretation (different from Arxiv:1103:0734 by Schwetz et al. or arXiv:1106.6028 by Fogli et al.)
 - No hint on θ_{13} >0 from reactor experiments: sin²(2 θ)<0.10 (90%C.L., Idof)
 - Global 90 % CL limit stays identical to previously published values
 - Multi-detector experiments are not affected

New Reactor Antineutrino Anomaly Discovered

- New physics hypothesis tested: 4th neutrino
 - no-oscillation hypothesis disfavored at 99.8%

Clear experimental confirmation / infirmation is needed:

• L/E≈ few m/MeV or km/GeV

New Experiment at Reactor

Short Baseline – Shape + Rate Analysis: SCRAAM, Nucifer,...

MCi or kCi neutrino generator in/close to a large liquid scintillator

Like SNO+, Borexino, KamLAND

New neutrino beam experiment probing for electron GeV neutrino disappearance at 100 m & 1 km C. Rubbia's proposal at CERN-PS

... and many others ...

(A)

Nucifer

The nuclear core compactness

Nucifer attempt testing the anomaly

Visible Energy [MeV]

kCi Experiment Concept

M. Cribier et al., <u>arXiv: [hep-ex]</u> (2011)

Thank you for your attention!

From e⁻ to anti- v_e spectra

 $\bar{\nu}_{e}$

œ

- A single beta decay branch: ${}^{A}_{Z}X \longrightarrow {}^{A}_{Z+1}Y + e^{-} + \bar{\nu}_{e}$
 - depends on: nucleus (Z), branching ratio (BR), end point (Q), spin-parity
 - Energy conservation: $E_e + E_v = Q_e$
- Anti-v spectra are computed from electron spectra by "inverting" each branch separately
- Cannot go from e⁻ to v from a global e⁻ spectrum, need each individual branch from each contributing nucleus

- \rightarrow 90 ± 5 % of the spectrum reproduced but still not meeting required precision
- \rightarrow Useful estimate of ²³⁸U spectrum which couldn't be measured @ ILL
- → Measurement at FRMII ongoing for ²³⁸U (N. Haag & K. Schreckenbach)

Reactor Electron Antineutrino Detection

- Experimental cross section per fission: $\sigma_{\rm f}$

$$\sigma_f^{\text{meas.}} = \frac{4\pi R^2 n_{\nu}^{\text{meas.}}}{N_p \varepsilon} \frac{\langle E_f \rangle}{P_{\text{th}}}$$

- Predicted cross section per fission: $\sigma_{
m pred}$

$$\sigma_f^{\text{pred.}} = \int_0^\infty \phi_f^{\text{pred.}}(E_\nu) \sigma_{\text{V-A}}(E_\nu) dE_\nu$$

What you should remember

• Obtaining the neutrino spectrum emitted by a nuclear reactor is hard!

"Ab-initio" approaches do not work fully yet: sum of all β-decay modes of all possible nuclei is only reproduces ~90% of the measured spectra

- Precision of 15% on ²³⁸U (which represents <10% of the v flux, so not a problem in what follows) → we updated the v spectrum from ²³⁸U fissions
- Solution: use precise electron data measured at ILL in the 1980's as an anchor point
 - "OLD method" used so far: fit these data to 30 "fake" electron β -spectra, which are then converted to ν spectra
 - **NEW** method: use all knowledge accumulated so far to rebuild ~90% of the ILL β -spectrum. Fit the 10% residual with 5 "fake" branches
- New method is superior because:
 - Corrections to β -spectra are applied branch by branch in a better fashion
 - Using all known β -branches matches distribution of Z and end-points Q better for 90% of the spectrum
- New method shows that ν spectra are 3% higher than previously thought
- What is the impact on all v experiments near nuclear power reactors?

The **1981 ILL** measurement

Reactor at ILL with almost pure ²³⁵U, with small core

- Detector 8.76 m from core
- Reanalysis in 1995 by part of the collaboration to account for overestimation of flux at ILL reactor

Affects the rate but not the shape analysis

Large errors, but looks like an oscillation pattern by eye?

A

I981:Try to reproduce published contour

- How? Add uncorrelated systematic in each bin until it's large enough
- Quick simulation: Required error = 11%, uncorrelated, in each bin (mostly equivalent to the finite size of the reactor core in full simulation).
- We can reproduce the results quite well

Promising experimental prospect testing the RAA!

energie atomique - energies alternat