LSND, MiniBooNE and T2K excess events as a signal from heavy neutrino decays

S.N. Gninenko Institute for Nuclear Research Moscow

NuFact'11, XIIIth Workshop CERN/Univ. of Geneva, August 1–6, 2011

Plan:

- LSND/ KARMEN $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ results and ν_{h} decays.
- MiniBooNE $v_{\mu}/\overline{v}_{\mu}$ excess events as a signal from v_{h} decays
- v_h decays as a possible origin of T2K excess events
- Constraints on v_h
- Searches for v_h with existing data and in future experiments
- Summary

S.G., arXive:1009.5536; 1101.4004, 1107.0279

LSND and KARMEN $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ oscillation results ³

- 800 MeV proton beam from LANSCE accelerator Water target Copper beamstop LSND Detector
- LSND experiment (1993-98)
 - 1.8 E23 POT, 167 t LSc
 - L = 30m, $20 < E_v < 53 \text{ MeV}$
- pion decays at rest:
 - $\pi^+ \rightarrow \mu^+ v_{\mu}$
- $\rightarrow \mu^+ \rightarrow e^+ v_e \overline{v_{\mu}} \rightarrow \overline{v_e}$ DIF v_u : DAR $v_u \approx 0.03$: 0.97
- e-like event excess
 87.9 ± 22.4 ± 6.0 ev's, 3.8 σ
- $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ oscillations osc.prob. (2.64 ± 0.67 ± 0.45) x 10⁻³

- KARMEN (1997-2001) - 5.9 E22 POT, 56 t LSc
- L = 17 m and 16 < $E_{\rm v}$ < 50 MeV
- observed excess of v_e : 10 ± 32 events.
- oscillation probability of
 < 8.5 x10⁻⁴ 90% CL

no evidence for oscillation.

Signature of the LSND excess: $e^+ + \text{delayed } \gamma(2.2 \text{MeV})$

Neutrons from $v_{\mu}^{+12}C \rightarrow n^+X^+v_h$

Cross section: $\sigma(v_{\mu}^{12}C \rightarrow v_{h}nX) \sim \sigma(v_{\mu}^{12}C \rightarrow v_{\mu}nX) \times |U_{\mu h}|^{2} \times F_{ph.s}$ C.J. Horovitz et al. PRC 48,3078(1993); M.C. Martinez et al. PRC 73,024607(2006); G.Garvey et al, PRC 48,1919(1993); E. Kolbe et al., PRC 52, 3437 (1995).

- Binding energy ~18 MeV
- Fermi momentum ~200 MeV/c
- No nuclear effects (n-rescatt., nucl. levels,..)

n cooling:

- $E_n < 5$ MeV at ~25 cm
- Time << n cupture time
- Fraction of high energy secondary n (> 20 MeV) < 2%

Discriminate between n's from $v_{\mu}^{12}C \rightarrow nXv_{h}$ and $\overline{v}_{e} p \rightarrow e^{+}n$ is not simple in LSND: the e+ γ tags are identical for both reactions

Why no excess in KARMEN?

New weakly interacting fermion v_h :

Properties:

- produced in v_{μ} NC interactions
- low mass $v_h > \sim 40 \text{ MeV} \text{ too heavy for KARMEN}$
- high mass $v_h^{-} < \sim 80 \text{ MeV}$ too heavy for LSND
- lifetime $< \sim 10^{-8}$ s to decay mostly in LSND fiducial volume
- decays dominantly $v_h \rightarrow \gamma v$

Usefull assumption: v_h is a component of V_{μ} $v_{\mu} = \sum U_{\mu i} v_i$

- muonic coupling $|U_{\mu h}|^2$
- could be produced in v_{μ} CC int.
- could be seen in μ , K, D,...decays

Note: v_h might also be a new exotic fermion, which is produced preferably in v_{μ} NC, e.g. due to $Zv_{\mu}v_h$ coupling, as in some E(6) models.

Hewett, Rizzo, Rhys. Rep. 183 (1989) 193.

Radiative decay of heavy neutrino $v_h \rightarrow \gamma v$

- γ -angular distribution in v_h rest frame is not generally isotropic: $1+a \cos(\Theta_{\gamma})$
- CP conserved, Majorana v's: a=0; Dirac v's: -1 < a < 1.
- $v_h \rightarrow \gamma v$ decays is dominant due to, e.g. large enough transition magnetic moment (not exotic at all)

 γ -energy : $E_{\gamma}^{0} = m_{h}/2 (1 - m_{v}^{2}/m_{h}^{2}) \approx m_{h}/2 \text{ for } m_{v} \ll m_{h}$ $v_{h} \rightarrow \gamma v \text{ decay rate: } \Gamma_{\gamma v} = \mu^{2}_{tr}/8\pi m_{h}^{3}(1 - m_{v}^{2}/m_{h}^{2})^{3}$

M.A.B. Beg, W.J. Marciano, M. Ruderman, PRD 17, 1395 (1978);
L.F. Li and F. Wilczek, PRD 25, 143 (1982);
P.B. Pal and L. Wolfenstein, PRD 25, 766(1982);
R.E. Shrock, Nucl. Phys. B206, 359 (1982);

LSND parameter space
Expected number of
$$v_h \rightarrow \gamma v$$
 events in LSND:
 $\Delta N_{\nu_h \rightarrow \gamma \nu} \simeq A \int \Phi_{\nu_\mu} \sigma_{\nu_\mu} |U_{\mu h}|^2 f_\gamma f_n f_{phs} P_{dec} P_{abs} \epsilon_\gamma dE$

Cross check with LSND oscillation signal

- $A=7.4x10^{30}$
- $\Phi = 1.26 \times 10^{14} \, v/cm^2$
- $\sigma = 0.95 \times 10^{-40} \text{ cm}^2$
- $f_e = 0.9$, $\epsilon = 0.42$
- $\Delta N_{osc} = 70$ events $P_{osc} \sim 2.64 \times 10^{-3}$ for to be compared with observed excess $87.9 \pm 22.4 \pm 6.0$ events

~40 MeV
$$\le$$
 m_h \le 80 MeV
~10⁻³ \le |U_{µh}|² \le 10⁻²
 $\tau \le$ ~10⁻⁸ s

LSND v_{μ} excess vs E_{vis} and $\cos\Theta_{\gamma\nu}$ $|U_{\mu h}|^2 = 3 \times 10^{-3}$, $\tau = 10^{-9}$ s

10

MiniBooNE low-energy excess events (6.5E20 POT)

MiniBooNE excess as a signal from $v_h \rightarrow \gamma v$

Comparison of E^{QE} distributions, $|U_{uh}|^2=3x10^{-3}$, $\tau =10^{-9}$ s

Comparison of E_{vis} and $\cos\Theta_{\gamma\nu}$ distributions $|U_{...k}|^2 = 3x10^{-3}, \tau = 10^{-9} s$

MiniBooNE antineutrino excess events (5.66E20 POT)

Phys. Rev. Lett.105, 181801 (2010)

- > 475 MeV, 120 events vs 99 \pm 10(stat) \pm 10(syst) expected
- < 475 MeV, 119 events vs 100 \pm 10(stat) \pm 10(syst) expected

Excess $\Delta N = 43.2 \pm 22.5 \approx 2 \sigma$

- → track events : either electrons, or $\gamma \rightarrow e^+e^-$ pairs
- → reconstructed v_{μ} energy 200< E^{QE}< 800 MeV
- \rightarrow reconstructed visible energy 200< E_{vis}< 700 MeV
- → angular distrubution is wide, consistent with $v_e QE$
- \rightarrow shape >475 MeV consistent with 2v oscillation interpretation of LSND

Comparison of E_{vis} and $\cos\Theta_{vv}$ distributions

 $|U_{uh}|^2 = 3x10^{-3}, \tau = 10^{-9} s$

Combined LSND-MiniBooNE parameter window

Are these values consistent with the results of previous measurements ?

Experimental constraints on $|U_{\mu h}|^2$

• Two-body decays of pions and kaons,	PSI, KEK
e- μ universality tests	NA-62, CERN
• Muon processes:	
Michel spectrum	TWIST
G _F	MuLan
$\mu \rightarrow e \nu \nu \gamma$	PIBETA
$\mu \rightarrow e\gamma$	MEGA
Some tension, radiative μ capture on H	TRIUMPH
but can be relaxed e.g. for a bit longer	
lifetime, or with other suggestions.	

- Neutrino experiments $v_h \rightarrow e+e-v$:
- LEP Z->νν* -> ννγ:
- Cosmology, astrophysics

McKeen, Pospelov PRD 82, 113018 (2010); S.G.,arXive:1011.5560

PS191, CHARM, NOMAD, NuTeV, BEBC,... ALEPH, DELPHI

SN1987A, ..

All consistent with LSND-MiniBooNE values

T2K excess of e-like events

Abe et al., arXiv:1106.2822[hep-ex]

- LBL search for $v_{\mu} \rightarrow v_{e}$ appearance
- off-axis v_{μ} , $\langle E \rangle \sim 600$ MeV, L ~ 280 km
- Near detectors: prediction of rate at Far from SM interactions
- Far detector is the SuperK

Excess ΔN = 4.5 events (6 observed, 1.5±0.3 expected) / 1.43e20 pot (excess signature is similar to MiniB.)

- → track events : either electrons, or $\gamma \rightarrow e^+e^-$ pairs
- → reconstructed v_{μ} energy $200 < E^{QE} < ~1500 \text{ MeV}$
- \rightarrow reconstructed visible energy $E_{vis} > \sim 100 \text{ MeV}$
- \rightarrow angular distrubution consistent with $v_e QE$
- → shape consistent with v oscillations interpretation with $\Theta_{13} \neq 0$

$v_{\rm h} \rightarrow \gamma v$ event rate at SuperK

SuperK top view

• roughly, FV rate ~ $|U_{\mu h}|^2$, rock rate~ $|U_{\mu h}|^2 \ge \tau$

40

35

30

Comparison of E^{QE} distributions

Distributions combined with background, shape consistent with data, χ^2 test p-values > 0.7 Prob(n_{exc} > 5 events) > 25 %

T2K excess of e-like events could originate from v_h decays

Searches for $v_h \rightarrow \gamma v$ with existing data and in future experiments

- direct test in $v_{\mu}NC$ interactions: $v_{\mu} + A \rightarrow v_{h} (\rightarrow v\gamma) + X$
- muon decay at rest: $\mu \rightarrow ev + v_h \rightarrow ev + v\gamma$
- K decays in flight /at rest: $K \rightarrow \mu + \nu_h \rightarrow \mu + \nu\gamma$

S.G., arXiv:1009.5536 [hep-ph] NOMAD Coll., in progress

S.G., arXiv:1101.4004 [hep-ex]

S.G., arXiv:1101.4004 [hep-ex] NA-62, in progress ISTRA+ , in progress C. Dib et al., arXiv:1105.4664 [hep-ph]

• atmospheric neutrino telescopes, Masip, Masjuan, arXiv:1103.0689

Search for displaced converted photons in v_{μ} NC: $v_{\mu} + A \rightarrow v_{h} (\rightarrow v\gamma) + X \rightarrow ve+e- + X$

Detector of two parts: dence D1 and light D2
 D1: high rate, primary vertex, ν_μ NC shower dump to minimize background leak to D2;
 D2, e.g. a'la NOMAD:

good particle ID and measur., secondary vertex.

- $v_h \rightarrow v\gamma$ signature: single e+e-pair displaced at L >> λ_{int}
- advantages to search for short T :
- $\mathbf{v_h}$ decay length ~ E
- absorption length $\sim \ln(E)$
- disadvantage: e+e- efficency drops with E

Background for single γ events

- π^0 decays
- K0 decays in flight
- neutron reactions
- coherent π^0/γ production

Fig. 2. Schematic of the DC tracker and a coherent π^0 event candidate in NOMAD where both photons from the π^0 decay convert in he DCs. The rod crosses represent drift chamber digitizations that are used in the track-reconstruction, whereas the black ones are not. The upstream (r) and downstream (r2) momentum vectors when extrapolated upstream intersect within the fiducial volume.

SUMMARY

- v_h 's: ~40 MeV $\le m_h \le 80$ MeV, ~ $10^{-3} \le |U_{\mu h}|^2 \le 10^{-2}$, ~ $10^{-11} \le \tau \le 10^{-9}$ s
 - could reconcile LSND, KARMEN and MiniBooNe results.
 - explain size of the excess events in LSND and in ν_{μ} / ν_{μ} MiniBooNE,
 - no excess in KARMEN,
 - provide distributions consistent with observations.
- could explain the size and shape of e-like excess in T2K
- experimental constraints on v_h are consistent with LSND-MiniB. values:
 - $v_{\rm h}$ is too heavy for π decays, too light for K decays
 - escape in v experiments due to dominant prompt $v_h \rightarrow \gamma v$ decay
- searches for ν_h in ν_μ NC, $\mu,$ and K experiments are complementary to current efforts to clarify LSND/MiniB anomalies.
 - (dis)prove $v_{\rm h}$ interpretation of LSND/MiniBooNE excess
 - close the $|U_{\mu h}|^2$ gap for $m_h \sim 40 80$ MeV
- if v_h is preferably produced in v_μ NC, then results of CC searches should be interpreted carefully.