

Status and perspectives of OPERA in the CNGS beam

Antonio Ereditato

Albert Einstein Center for Fundamental Physics

LHEP, Bern University

OPERA's goal: establish detection of neutrino oscillations in appearance mode

following the Super- Kamiokande discovery of oscillations with atmospheric neutrinos and the confirmation obtained with solar neutrinos and accelerator beams. Important, missing tile in the oscillation picture.

The PMNS 3-flavor oscillation formalism predicts:

$$P(\nu_{\mu} \rightarrow \nu_{\tau}) \sim \sin^2 2\theta_{23} \cos^4 \theta_{13} \sin^2 (\Delta m_{23}^2 L/4E)$$

Requirements:

1) long baseline, 2) high neutrino energy, 3) high beam intensity, 4) detect short lived τ 's

THE PRINCIPLE OF THE EXPERIMENT: ECC + ELECTRONIC DETECTORS

- Detect tau-lepton production and decay
- Use electronic detectors to provide "time resolution" to the emulsions and preselect the interaction region

THE IMPLEMENTATION OF THE PRINCIPLE

plus a series of large infrastructure for brick manipulation, film development, scanning,...

CNGS BEAM

	Year	Beam days	Protons on target (pot)	SPS Eff.	Events in the bricks
CNGS vs OPERA	2008	123	1.78x10 ¹⁹	61%	1698
	2009	155	3.52x10 ¹⁹	70%	3693
	2010	187	4.04x10 ¹⁹	81%	4248
	2011	Ongoing (223)	3.31x10 ¹⁹	79%	3304

Goal of the experiment: 22.5x10¹⁹ pot

2010: close to nominal year (4.5x10¹⁹ pot)

2011: hit record performance ? (expect ~5x10¹⁹ pot for 223 days) Dedicated mode (no other fixed target) from 18 March to 7 June.

Until now (2008-2011): 12.65x10¹⁹ pot

Aim at high-intensity runs in 2012 as well, with a dedicated running period

GLOBAL EXPERIMENTAL FEATURES

Evolution of the OPERA target with time

OPERA analysis performance plot

PERFORMANCE OF THE ELECTRONIC DETECTORS

N. Agafonova et al 2011 New J. Phys. 13 053051

Figure 2. Examples of CC (top) and NC (bottom) events as seen in one projection view of the OPERA EDs. In this view, the two SMs can be recognized: for each of these, the target is followed by the muon spectrometer.

Figure 4. <u>Number of hit walls</u> for data (dots with error bars) and MC (solid line) contained events. The first bump is mainly due to NC events (dashed line), whereas the second and third ones originate from CC events crossing one and two SMs, respectively. The MC distribution has been normalized to data.

Figure 9. Energy deposit in the TT for events with at least one reconstructed muon (left) and events with no muon (right). Dots with error bars correspond to data and solid lines to MC. MC distributions are normalized to data.

NEWS FROM THE DATA ANALYSIS

- continuously improving scanning performance
- full simulation of emulsion data, scanning and event selection
- improved knowledge of detection efficiencies
- BG reduction
- one v_{τ} candidate event: in agreement with expectations
- 2008-2009 CNGS data statistics published

Changeable Sheet scanning

LNGS: 11 microscopes, 220 cm²/h

Nagoya: 5 S-UTS, 220 cm²/h

1'000'000 cm² analyzed so far

Improvements in the CS analysis: neutrino interaction vertex pre-validated by the CS tracks \rightarrow

Transverse accuracy: 0.3 mm Longitudinal accuracy: 3 mm

Decay topology detection

Impact parameter distribution as measured with data

Events with IP>10 μ m are visually inspected: possible decay topology

Muon angular distribution as measured in the bricks

Good agreement in the angular distribution of muon tracks

Soft muon measurement (arXiv:1106.6211v1)

Figure 14: Left: Muon momenta measured by MCS (P_{MCS}) as a function of the momenta obtained from the electronic detectors (P_{ED}). The error bars correspond to the 68% confidence level range. Right: The relative difference between the two measurements with respect to the electronic detector measurement.

Hadron reinteraction BG

Increased number of interactions from test-beam data (4 GeV negative pions) to cross-check simulations (x10 statistics w.r.t. first oscillation paper: ~200 m of hadronic tracks)

Pion interaction studies

Hadronic tracks in neutrino interactions with kink topology far from the primary vertex

Hadronic interactions in test beam brick

14 m of tracks: equivalent to 2300 NC events

No events in the signal region

10 events in reference region (Pt > 200 MeV/c): 10.8 expected by updated simulations

Systematic track follow-down for candidate events: search for muons

Charm

•Hadronic interactions in ν_{μ} CC with misidentified μ ($\tau \rightarrow h$ channel) •Hadronic interactions in ν_{μ} CC and NC ($\tau \rightarrow \mu$ channel)

- Momentum range correlation: tested for the first v_{τ} candidate event
- Misidentified muons from charm events: 3.28 % (was 5%)
- Factor 100 reduction of the BG for the $\tau \rightarrow \mu$ channel: golden channel!

Search for highly ionizing fragments (indication of interaction rather than decay)

Hadron interaction at pl37 ⇔ pl38 Kink angle = 0.144 rad. Pt = 0.265 GeV/c

Interaction position z = 477micron

- Specific tool and procedure set up and applied
- Validation on the test-beam sample of hadronic interactions
- Search on the first tau candidate
 no associated fragments found

Down stream of interaction point

Simulation of highly ionizing fragments

Study of 64 interactions of 8 GeV π -

 \rightarrow Highly ionizing tracks detection in 57±7% of the cases (Fluka: 53%)

Forward-backward asymmetry: 0.75 ± 0.15 (Fluka: 0.71)

Charm events (2008-2009 data sample)

Topology	Observed events	Expected events			
		Charm	Background	Total	
Charged 1-prong	13	15.9	1.9	17.8	
Neutral 2-prong	18	15.7	0.8	16.5	
Charged 3-prong	5	5.5	0.3	5.8	
Neutral 4-prong	3	2.0	<0.1	2.1	
Total	39	39.1±7.5	3.0±0.9	42.2±8.3	

NEW OSCILLATION ANALYSIS

arXiv:1107.2594 submitted to PLB

Data

	0mu	1mu	All
Events predicted by the electronic detector	1503	3752	5255
Interactions located in ECC	519	2280	2799
Located in dead material	54	245	299
Decay search performed	494	2244	2738

- 92% of the expected sample that could be decay searched

- location efficiency of the interaction vertex: 74% for CC and 48% for NC

Backgrounds

- Production and decay of charmed particles
- Hadron re-interactions
- Large angle μ scattering

Decay	Number of background events for:							
channel	22.5×10^{19} p.o.t.			Analysed sample			ole	
	Charm	Hadron	Muon	Total	Charm	Hadron	Muon	Total
$\tau \rightarrow \mu$	0.025	0.00	0.07	0.09 ± 0.04	0.00	0.00	0.02	0.02 ± 0.01
$\tau \rightarrow e$	0.22	0	0	0.22 ± 0.05	0.05	0	0	0.05 ± 0.01
$\tau \rightarrow h$	0.14	0.11	0	0.24 ± 0.06	0.03	0.02	0	0.05 ± 0.01
$\tau \rightarrow 3h$	0.18	0	0	0.18±0.04	0.04	0	0	0.04 ± 0.01
Total	0.55	0.11	0.07	0.73 ± 0.15	0.12	0.02	0.02	0.16 ± 0.03

• Charm production cross-section increased (last CHORUS data)

- Fragmentation fraction into D⁺ increased from 10% to 22%
- Improvements due to the track follow-down
- Significant reduction of the background in the $\tau{\rightarrow}\mu$ channel

arXiv:1107.0613v1

Signal

Decay channel	Number of signal events expected for				
	22.5×10^{19} p.o.t.	Analysed sample			
$\tau \to \mu$	1.79	0.39			
$\tau \rightarrow e$	2.89	0.63			
$\tau \rightarrow h$	2.25	0.49			
$\tau \rightarrow 3h$	0.71	0.15			
Total	7.63	1.65			

1 v_{τ} candidate event observed in the hadronic decay mode, with a BG of 0.05 ± 0.01 events (0.49 ± 0.12 expected signal events)

For standard oscillation parameter values this corresponds to 95% probability that the event is not due to a BG fluctuation.

Considering all decay modes: expected 1.65 ± 0.41 events, BG = 0.16 ± 0.03 events. Probability of BG fluctuation: 15%

WORK IN PROGRESS

(e.g. 2010 data sample)

	0mu	1mu	All
Events predicted by the electronic detector	1165	2747	3912
Extracted CS	1146	2700	3846
CS Scanned	1043	2517	3560
Found in CS	479	1420	1909
Interactions located in ECC	156	558	714
Decay search	113	381	494

- Set up an aggressive scanning/analysis strategy

- Goal: report at NEUTRINO 2012 on the full 2008-2009-2010 (+part of 2011) statistics

another example: v_e EVENTS

v_e candidate event (3)

- So far detected 14 $\nu_{\rm e}$ candidates during the scan back procedure
- Developing dedicated analyses to increase the detection efficiency
- Estimation of BG in progress: prompt \mathbf{v}_e beam component and γ conversion contamination
- v_{μ} - v_{e} oscillation analysis in progress

MID-LONG TERM STRATEGY OF OPERA

Memo recently sent to the SPSC:

The OPERA Collaboration looks forward to the successful completion of the CNGS 2011 run, with the aim of securing an integrated number of p.o.t. close, or hopefully exceeding, the nominal figure of 4.5x10¹⁹ p.o.t/year. This would perfectly match the high efficiency that OPERA reached for the various detectors and facilities after several years of continuously improving operation.

We strongly request CERN and the CNGS team to make sure that the 2012 run will be at least as good as the 2011 run, hopefully with a period of dedicated mode operation as like this year. Our goal is to collect by the end of 2012 a total statistics (2008-2012) as close as possible to the goal of the experiment, namely 22.5x10¹⁹ p.o.t.

By summer 2012 we will be in position of making a statement about the longer term strategy on the basis of the potential availability of a CNGS beam in 2013 and/or 2014, and of the support provided by the funding agencies. In any case, we will keep the detector and the facilities operational during the CERN accelerator shut-down as required for the handling of the bricks hit by CNGS neutrinos collected up to 2012.

As a general remark, we stress our continued commitment to a successful achievement of our main physics goal, the statistically significant observation of direct appearance $v_{\mu} - v_{\tau}$ flavor transition, as well as of the study of the sub-leading $v_{\mu} - v_{e}$ oscillation.

