Neutrino Paradigm and LHC

Goran Senjanović ICTP, Trieste

Prepared for CERN, August 1, 2011

New Physics: these days we all say LHC

and yet...

no hard prediction

most tied to naturalness - soft

try phenomenological (experimental) motivation? still soft

Neutrino Mass

- the only new established physics beyond SM

window to new physics

seríous chance at LHC?

🗆 not a review

🗆 not a review

🗆 a case for LHC as a neutrino machine

🗆 not a review

□ a case for LHC as a neutrino machine

□ case study of a (the?) theory

🗆 not a review

□ a case for LHC as a neutrino machine

□ case study of a (the?) theory

I seesaw at LHC

Dirac equation '28

Skobeltsyn '23 Chao '29

anti particles

Anderson '32 Segre', Chamberlaín '55

particle \implies different antiparticle

for every fermion

neutrino = anti neutrino ?

Majorana '37 neutron

Lepton Number Violation:

`creation of electrons'

neutrino less double beta decay

Racah'37 Furry '38

colliders - LHC

Kenng, GS '83

Parity violation in weak interaction

Lee, Yang '56

not well known: they argue it is a hidden symmetry *

* mirror fermions

Martínez, Melfo, Nestí, GS '11 Melfo, Nemevsek, Nestí, GS, Zhang '11

Majorana Program: neutríno mass

 $\nu_M = \nu_L + \nu_L^*$

 \Leftrightarrow

 $m_{\nu}^{M}(\nu_{L}\nu_{L}+h.c.)$

 $\Delta L = 2$ lepton number violation

forbidden by SM symmetry

window to new physics

Double-beta decay Goepert-Mayer '35

 ${}^{76}_{32}Ge \not\rightarrow^{76}_{33}As + e + \bar{\nu} \qquad \Rightarrow \quad {}^{76}_{32}Ge \rightarrow^{76}_{34}Se + e + e + \bar{\nu} + \bar{\nu}$

Double-beta decay Goepert-Mayer '35

 ${}^{76}_{32}Ge \not\rightarrow^{76}_{33}As + e + \bar{\nu} \qquad \Rightarrow \quad {}^{76}_{32}Ge \rightarrow^{76}_{34}Se + e + e + \bar{\nu} + \bar{\nu}$

Neutrino mas

1.0

0.1

 $\left| m_{\nu}^{ee} \right|$ in eV

 10^{-3}

 10^{-4}

 10^{-4}

vissaní '02

1.0

0.1

0.01

 10^{-3}

 10^{-4}

 10^{-4}

 $|m_{\nu}^{ee}|$ in eV

víssaní '02

víssaní '02

Experiments !

Experiment	lsotope	Mass of	Sensitivity	Sensitivity	Status	Start
		lsotope [kg]	$T_{1/2}^{0 u}$ [yrs]	$\langle m_{m u} angle$, meV		
GERDA	⁷⁶ Ge	18	3×10^{25}	~ 200	running!	2011
		40	2×10^{26}	\sim 70	in progress	\sim 2012
		1000	6×10^{27}	10-40	R&D	\sim 2015
CUORE	¹³⁰ Te	200	$(6.5 \div 2.1) \times 10^{26}$	20-90	in progress	\sim 2013
MAJORANA	76 Ge	30-60	$(1 \div 2) \times 10^{26}$	70-200	in progress	\sim 2013
		1000	6×10^{27}	10-40	R&D	\sim 2015
EXO	¹³⁶ Xe	200	6.4×10^{25}	100-200	in progress	\sim 2011
		1000	8×10^{26}	30-60	R&D	\sim 2015
SuperNEMO	⁸² Se	100-200	$(1 - 2) \times 10^{26}$	40-100	R&D	\sim 2013-2015
KamLAND-Zen	¹³⁶ Xe	400	4×10^{26}	40-80	in progress	~ 2011
		1000	10 ²⁷	25-50	R&D	\sim 2013-2015
SNO+	¹⁵⁰ Nd	56	4.5×10^{24}	100-300	in progress	\sim 2012
		500	3×10^{25}	40-120	R&D	\sim 2015

Rodejohann'11

GERDA@LNGS started

if claim confirmed

 $\mathcal{A_{NP}} \propto \frac{G_F^2 M_W^4}{\Lambda^5}$

expect: a few years

new physics necessary?

 ${\cal A}_{
u} \propto {G_F^2 m_{
u}^{ee}\over p^2}$

 $(p \simeq 100 \, MeV)$

Feinberg, Goldhaber '59 Pontecorvo '64

 $\Lambda \sim TeV$ LHC

Neutrino mass: theory

Standard Model: neutrino massless

only ν_L - and $\nu_L \nu_L$ forbidden

God may be left-handed, but not an invalid

$\begin{array}{c} \textbf{L-R symmetry} \\ \begin{pmatrix} u_L \\ d_L \end{pmatrix} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} & \begin{array}{c} u_R \\ e_R \end{pmatrix} & \begin{array}{c} u_R \\ d_R \end{array} \end{array}$

W_L

 $\left(\begin{array}{c} u_L \\ d_L \end{array}\right) \left(\begin{array}{c} \nu_L \\ e_L \end{array}\right)$

 W_L

L-R symmetry Lee, Yang dream $\left(\begin{array}{c}\nu_R\\e_R\end{array}\right)\left(\begin{array}{c}u_R\\d_R\end{array}\right)$ $\left(\begin{array}{c} u_L \\ d_L \end{array}\right) \left(\begin{array}{c} \nu_L \\ e_L \end{array}\right)$ W_R W_L

L-R symmetry Lee, Yang dream $\left(\begin{array}{c} \left(\nu_R\right)\\ e_R\end{array}\right) \left(\begin{array}{c} u_R\\ d_R\end{array}\right)$ $\left(\begin{array}{c} u_L \\ d_L \end{array}\right) \left(\begin{array}{c} \nu_L \\ e_L \end{array}\right)$ W_R W_L

 $E \gg m_{W_R}$

parity restored?

Patí, Salam '74 Mohapatra, GS '75

 $m_{W_R} \gg m_{W_L}$

 $G = SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

$$Q = T_L^3 + T_R^3 + \frac{B - L}{2}$$

• hypercharge Y:

traded for

anomaly free global B-L of SM

ríght-handed neutrínos:
 LR symmetry ξ cancel gauge B-L anomaly

Curse: neutrino mass

• neutrino massive -

just like the electron

• naive expectation:

 $m_{\nu} \simeq m_e$ (if Dirac particles)

tried hard to avoid it, not convincing

Branco, GS'77

Blessing: neutrino mass

seesaw $M_{\nu_R} \propto M_{W_R}$

 $\begin{array}{cc} \nu_L \left(\begin{array}{cc} 0 & m_D \\ \nu_R \left(\begin{array}{cc} m_D & M_{\nu_R} \end{array} \right) \end{array} \right)$

 $m_{\nu} = m_D^T \frac{1}{M_{\nu D}} m_D$

Minkowski '77

Mohapatra, GS '79

Maíezza, Nemevsek, Nestí, GS '10

 $M_{W_R} \gtrsim 2.5 \,\mathrm{TeV}$

Beall, Bander, Soní '81 Mohapatra, GS, Tran '83 Ecker, Grímus '85

Zhang, An, jí, Mohapatra '07

Minimal model:

theoretical limit

rare processes: $K_L - K_S$ mass difference...

experiment is catching up!

New source for $0\nu 2\beta$

 $LL \xrightarrow{n} \underbrace{V_e}_{V_e} \underbrace{v_e}_{V_e} \underbrace{v_e}_{W_L} \underbrace{v_e}_{W_L} \underbrace{v_e}_{W_L} \underbrace{p}_{W_L} \underbrace{$

$$LL \propto \frac{1}{M_{W_L}^4} \frac{m_{\nu}}{p^2}$$
$$p \simeq 100 MeV$$
$$m_{\nu} \simeq 1 eV$$

N = right-handedneutríno Mohapatra, GS '81

 $RR \propto \frac{1}{M_{W_R}^4} \frac{1}{m_N}$

 $M_{W_R} \simeq m_N \simeq 10 M_{W_L} \sim \text{TeV}$

LHC connection?

rotation in a plane

Ś e NR 9 *Pe* e \oplus Ze wz ふ NR J.

W_R production @ colliders

• dírect probe of Majorana nature

Kenng, G.S. '83

- Parity restoration
- Lepton Number Violation: electrons (+ jets)
- · Lepton Flavor Violation: flavor structure
14 TeV LHC L=10/fb

Nestí

red = background

peaks = mass of W_R (GeV)

Gift of LNV: no background above 1.5 TeV

• up to 4 Tev @ L = 30/fb

Gnínenko et al '06

• up to ~ 6 Tev @ L= 300/fb

Ferrari et al, '00

CMS

LLjj LHC @ E = 7 TeV

Nemevsek, Nestí, GS, Zhang, 11

January

estimate:

L = 1/fb

 $M_{W_R} \gtrsim 1.4 \, TeV$

 $M_{W_R} \gtrsim 2.2 \, TeV$

LHC @ E = 7 TeV latest: $M_{W_R} \gtrsim 1700 \, GeV$ July

CMS public note: CMS PAS EXO-11-002

Leonidopoulos, talk @ IECHEP, Grenoble, July

January '11

Nemevsek, Nestí, GS, Zhang, '11

Wednesday, August 3, 2011

January '11

Nemevsek, Nestí, GS, Zhang, '11

July '11

January '11

Nemevsek, Nestí, GS, Zhang, '11

July '11

Mohapatra, GS '75, '81

Model content

Mohapatra, GS '75, '81

R - triplet

 $\langle \Delta_R \rangle = \left(\begin{array}{c} & \\ v_R \end{array} \right)$

• mass of N(majorana) • mass of WR and ZR

Wednesday, August 3, 2011

Mohapatra, GS '75, '81

Model content

R-triplet bi-doublet

 $\langle \Delta_R \rangle = \begin{pmatrix} v_R \end{pmatrix} \phi \sim (h_{\rm SM}, H_{\rm heavy})$ • mass of N(majorana) • mass of WR and ZR

> • EW symmetry breaking

Mohapatra, GS '75, '81

$$R - triplet \qquad bi-doublet \qquad L - triplet
(\Delta_R) = \begin{pmatrix} v_R \end{pmatrix} \qquad \phi \sim (h_{SM}, H_{heavy}) \qquad (\Delta_L) = \begin{pmatrix} v_L \end{pmatrix} \\ v_L \end{pmatrix} \\
 \cdot mass of N(majorana) \\
 \cdot mass of VR and ZR \qquad (\phi) = \begin{pmatrix} v \\ v v \end{pmatrix} \qquad \cdot mass of V \\ (majorana) \\
 \cdot EW symmetry \\ breaking \qquad v_R \gg v \gg v_L$$

Wednesday, August 3, 2011

LHC: measure m_N and V_R

Kenng, G.S. '83

in order to illustrate: type 11 seesaw

 $V_R = V_L^* \qquad m_N/m_\nu = const$

Tello, Nemevsek, Nestí, GS, Vissaní, PRL'11

Back to neutrinoless double beta decay

Tello et al '11

Right only

opposite from m_{ν}

Left + Right

Lepton Flavor Violation

Círigliano et al '04

Tello'08

(Loop: $\mu \rightarrow e \gamma \quad \mu \rightarrow e \text{ conversion in nuclei}$)

Lepton Flavor Violation

talk by Nemevsek, NuFact11 - saturday

Tello, Nemevsek, Nestí, GS, Vissaní, PRL'11

Neutrino mass: back to basics

neutrino much lighter than electron

neutrino much lighter than electron

a problem? not a priori

neutrino much lighter than electron

a problem? not a príorí technically natural: chiral or lepton number symmetry

neutrino much lighter than electron

a problem? not a príorí technically natural: chiral or lepton number symmetry

lepton mixings large, quark small

neutrino much lighter than electron

a problem? not a príorí technically natural: chiral or lepton number symmetry

lepton mixings large, quark small a problem? not a priori

neutrino much lighter than electron

a problem? not a príorí technically natural: chiral or lepton number symmetry

lepton mixings large, quark small

a problem? not a priori

q-l symmetry badly broken

neutrino much lighter than electron

a problem? not a príorí technically natural: chiral or lepton number symmetry

lepton mixings large, quark small

a problem? not a priori

q-l symmetry badly broken

neutrino masses/mixings hew physics

Effective operators and New Physics

SM degrees of freedom

two operators stand out

$$\ell = \left(\begin{array}{c} \nu \\ e \end{array} \right)_L$$

$$\mathcal{L}_p = Y_{eff}^p \frac{qqq\ell}{\Lambda_p^2}$$

Weinberg '79

 $q = \left(\begin{array}{c} u \\ d \end{array}\right)_r$

H - Higgs doublet $Y_{eff} \simeq 1$ $\Lambda_p \gtrsim 10^{15} \, GeV$ $\Lambda_{\nu} \lesssim 10^{14} \, GeV$

Grand Unification?

suggestive:

$$\Lambda_{\nu} \lesssim \Lambda_p \simeq M_{GUT}$$

SO(10) tailor made

minimal supersymmetric version:

 $\theta_{\rm atm} \simeq 45^o \Leftrightarrow \theta_{ub} \simeq 0$

Bajc, GS, Vissani '02

NO LHC

Goh, Mohapatra, Ng '03

GS: review '11

.

Aulakh '11

Fermi theory

 $G_F = \frac{1}{\Lambda^2}$ $\Lambda \simeq 300 \, GeV$

$G_F = \frac{g^2}{8M_W^2} \quad g \simeq 0.6$ $M_W \simeq 80 \, GeV$

True scale can be (much) smaller

Gravity $G_N = \frac{1}{M_P^2}$ $M_P \simeq 10^{19} \, GeV$

$$G_N = \frac{g^2}{\Lambda_F^2} \qquad g \ll 1$$
$$\Lambda_F \simeq TeV \qquad \not f g = (\Lambda_F R)^{-n/2}$$

large extra dímensions

ADD '98

Weinberg's d= 5 operator: uv completion = seesaw

 $(\ell^T \epsilon H)C(H^T \epsilon \ell) = (\ell^T \epsilon C \vec{\sigma} \ell)(H^T \epsilon \vec{\sigma} H) = (\ell^T \epsilon \vec{\sigma} H)C(H^T \epsilon \vec{\sigma} \ell)$ singlet fermion triplet fermion (sterile) Y=0Type 1 LR triplet scalar y=2 Type III SU(5) Type II LR

Probing seesaw @LHC

Type I seesaw

Mínkowskí '77 Mohapatra, GS '79 Gell-Mann, et al '79 Yanagída '79

steríle neutríno - remnant of LR?

integrated out - phantom particle?

* * * * * * * * * * * * * * *

N - hard, if not impossible, to produce at colliders

crying for W_R

Kersten, Smírnov '07 Datta, Guchaít, Pílaftsís '93 Datta, Guchaít, Roy '93 Han, Zhang '06 del Aguíla, Aguílar-Saavedra, Píttau '07' del Aguíla, Aguílar-Saavedra '08

L-R theory

- •understanding Pviolation
- gauge structure: new currents
- LNV@colliders
- see-saw: ν_R

L-R theory

 ν_R

Wednesday, August 3, 2011

GUT

- unification of forces
- charge quantization: monopoles
- fermion mass relations
- proton decay: X boson

GUT

X boson

Wednesday, August 3, 2011

Standard Model

- Electroweak unification
- gauge structure
- W-Z mass ratio
- neutral currents: Z boson

Standard Model

Z boson

Wednesday, August 3, 2011
Bounds on the e- N mixing

N can be as líght as you wísh

líght N: NUSM neutríno mass, baryogenesís, DM

> Asaka, Blanchet, Shaposhníkov '05,

Atre, Han, Pascolí, Zhang '09

Mítra, GS, Víssaní '11

talk by Ibarra

Type II seesaw

Magg, Wetterich '80 Lazarides, Shafi, Wetterich '81 Mohapatra, GS '81

 $\mathcal{L} = Y_{\Delta} \ell^T \epsilon C \Delta \ell + \mu H^T \epsilon \Delta^{\dagger} H + m_{\Delta}^2 \Delta^{\dagger} \Delta$ + $v_{\Delta} \simeq \mu \frac{M_W^2}{m_{\Delta}^2} \lesssim GeV$ (ρ parameter)

in components
$$\begin{pmatrix} \Delta^+/\sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+/\sqrt{2} \end{pmatrix}$$

remnant of LR theory ? \mathbb{R} - triplet bi-doublet L - triplet $\langle \Delta_R \rangle = \begin{pmatrix} v_R \end{pmatrix}$ $\phi \sim (h_{\text{light}}, H_{\text{heavy}})$ $\langle \Delta_L \rangle = \begin{pmatrix} v_L \end{pmatrix}$ $\langle \phi \rangle = \begin{pmatrix} v \\ v' \end{pmatrix}$

 $v_L \ll v' < v \ll v_R$

 $M_{\nu} = U_{\ell}^{T} m_{\nu} U_{\ell} = Y_{\Delta} v_{\Delta}$ Akeroyd, Aokí, Sugíyama '07 Filevíez-Perez, Han, Huang, Lí, Wang '08 del Aguíla, Aguílar-Saaverda '08

probe neutrino masses and mixings

0 10^{-1} ВB π 10⁻² -BR_{eµ} BR_{µµ} $\mathsf{BR}_{\mathsf{ee}}$ 10⁻³ 10⁰ 1 1 1 1 1 1 10⁻³ 10⁻² 10⁻¹ 10⁻⁴ 10⁰ $m_0(eV)$ NH, $s_{13} = 0.1$ 10⁻¹ $NH, s_{13} = 0$ ВД 10⁻² -- IH, s₁₃ = 0.1 BR_{µt} BR_{eτ} ____ IH, s₁₃ = 0 10^{-3} 10⁻³ 10⁻² 10⁻³ 10⁻² 10⁻¹ '10⁻⁴ 10⁰ 10⁻¹ 10⁰ $m_0(eV)$ $m_0^{}(eV)$ Garayoa, Schwetz

• hierarchy • 1-3 mixing Chun, Lee, Park '03 Garayoa, Schwetz '07 Kafastík, Raídal, Rebane '07 Fileviez Perez, Han, Li, Wang'08

probe of:

Why only the triplet?

Principle: all "Yukawa" Higgs allowed by the SM symmetries

vevs: color and charge singlets

 Δ^{--} limits

DO arXiv:1106.4250

June

Decay	$H_L^{\pm\pm}$		$H_R^{\pm\pm}$	
	expected	observed	expected	observed
$\mathcal{B}(H^{\pm\pm} \to \tau^{\pm}\tau^{\pm}) = 1$	116	128		
$\mathcal{B}(H^{\pm\pm} \to \mu^{\pm}\tau^{\pm}) = 1$	149	144	119	113
Equal \mathcal{B} into				
$ au^\pm au^\pm, \mu^\pm \mu^\pm, au^\pm \mu^\pm$	130	138		
$\mathcal{B}(H^{\pm\pm} \to \mu^{\pm}\mu^{\pm}) = 1$	180	168	154	145

Type III seesaw: triplet fermions

ν

H

 Y_T

T

Foot, Lew, He, Joshí '89

MINIMAL SU(5)

T

• asymmetric matter $3 \times (10_F + \overline{5}_F)$

• fine-tuning

H

 Y_T

 ν

Georgi-Glashow

• no unification

• neutrino massless

one extra fermionic 24_F

Bajc, G.S. '06 Bajc, Nemevsek, G.S. '07

maintains nicely the ugliness of the minimal model:

- asymmetric matter
- even more fine-tuning

but also its predictivity

 $24_F = (1_C, 1)_0 + (1_C, 3)_0 + (8_C, 1) + (3_C, 2)_{5/6} + (\overline{3}_C, 2)_{-5/6}$ hybrid: type 1 + 111 singlet S

• unification

• unification

color octet $\alpha_i{}^{-1}(\mu)$ triplet $\log_{10}(\mu/\text{GeV})$

• unification

color octet $\alpha_i^{-1}(\mu)$ triplet $\log_{10}(\mu/\text{GeV})$

• unification

color octet $\alpha_i^{-1}(\mu)$ triplet $\log_{10}(\mu/\text{GeV})$

• unification

color octet $\alpha_i^{-1}(\mu)$ $\log_{10}(\mu/\text{GeV})$

• unification

color octet $\alpha_i^{-1}(\mu)$ triplet $\log_{10}(\mu/\text{GeV})$

Bajc, Nemevsek, G.S. '07

• unification

proton decay color octet $\alpha_i^{-1}(\mu)$ triplet $\log_{10}(\mu/\text{GeV})$

Bajc, Nemevsek, G.S. '07

• unification

proton decay color octet $\alpha_i^{-1}(\mu)$ triplet $\log_{10}(\mu/{\rm GeV})$

Bajc, Nemevsek, G.S. '07

• unification

proton decay color octet $\alpha_i^{-1}(\mu)$ triplet $\log_{10}(\mu/\text{GeV})$

Bajc, Nemevsek, G.S. '07

• unification

proton decay color octet $\alpha_i^{-1}(\mu)$ triplet $\log_{10}(\mu/\text{GeV})$

• unification

 $m_T vs M_{GUT} @ two loops$

Probing neutrino parameters

Same couplings y_T^i contribute to:

• neutrino mass matrix

• triplet decays

LHC:

 $m_T \Rightarrow 450 (700) \, GeV @ L = 10 (100) f b^{-1}$

Arhrib, Bajc, Ghosh, Han, Huang, Puljak, GS '09

$vy_T^{i*} = \begin{cases} i\sqrt{M_T} \left(U_{i2}\sqrt{m_2^{\nu}}\cos z + U_{i3}\sqrt{m_3^{\nu}}\sin z \right), \text{ NH } (m_1^{\nu} = 0), \\ i\sqrt{M_T} \left(U_{i1}\sqrt{m_1^{\nu}}\cos z + U_{i2}\sqrt{m_2^{\nu}}\sin z \right), \text{ IH } (m_3^{\nu} = 0), \end{cases}$

Ibarra, Ross '04

z = complex

Supersymmetry?

- · can mímic many of the phenomena
- Type III wino with RP violation

 $\mathcal{W}_{\mathcal{R}_p} = \lambda \ell \ell e^c + \lambda' q \ell d^c + \lambda'' u^c d^c d^c + \mu \ell H$

· too many parameters

assumptions about sparticle masses

• supersymmetric seesaw?

subject in itself

can probe the origin of neutrino mass

can probe the origin of neutrino mass

can resolve the mystery of parity violation

can probe the origin of neutrino mass

can resolve the mystery of parity violation

can directly observe lepton number violation

can probe the origin of neutrino mass

can resolve the mystery of parity violation

can directly observe lepton number violation

can dírectly see Majorana nature

can probe the origin of neutrino mass

can resolve the mystery of parity violation

can directly observe lepton number violation

can dírectly see Majorana nature

Last but not least: measure masses and mixings and provide link with low energy experiments

Thank you