

Accelerators for Future Neutrino Facilities: Strengths and Challenges Michael S. Zisman U.S. Dept. of Energy

Office of High Energy Physics/SC-25

and

Center for Beam Physics Accelerator & Fusion Research Division Lawrence Berkeley National Laboratory

> NuFact11-Geneva August 1, 2011

Introduction

- Discovery of neutrino oscillations led to strong interest in providing intense beams of accelerator-produced neutrinos
 - such facilities may be able to observe CP violation in the lepton sector
 possibly the reason we're all here
- Several ideas have been proposed for producing the required neutrino beams
 - a Superbeam facility based on the decays of an intense pion beam
 - a Beta Beam facility based on decays of a stored beam of betaunstable ions
 - a Neutrino Factory based on the decays of a stored muon beam
 could serve as precursor to eventual Muon Collider
- All approaches have their advantages and disadvantages
 - all are challenging...and all will be expensive
 - EUROnu program attempting to compare all options on an equal footing

 a real service to our community!

Physics Context

- Superbeam gives ~98% muon neutrinos ($\pi \rightarrow \mu + \nu_{\mu}$)
- \cdot Beta beam gives only electron neutrinos
 - ⁶He \rightarrow ⁶Li + e⁻ + $\overline{\nu}_{e}$
 - ¹⁸Ne \rightarrow ¹⁸F + e⁺ + v_e

Baseline scenario produces low energy neutrinos

 Neutrino Factory beam gives both electron and muon neutrinos

$$\mu^{-} \rightarrow e^{-} \overline{V}_{e} V_{\mu} \Longrightarrow 50\% \overline{V}_{e} + 50\% V_{\mu}$$

 $\mu^{+} \rightarrow e^{+} V_{e} \overline{V}_{\mu} \Longrightarrow 50\% V_{e} + 50\% \overline{V}_{\mu}$

Baseline scenario produces high energy neutrinos, above τ threshold

 \cdot Electron neutrinos are most favorable to do the science

— $\nu_{\text{e}} \rightarrow \nu_{\mu}$ oscillations give easily detectable "wrong-sign" μ

 $_{\circ}\,\text{do}$ not get ν_{e} from "conventional" neutrino beam line

Superbeam

- Superbeam facility is a higher-power version of today's neutrino beam facilities
 - approach is evolutionary rather than revolutionary
 - ${}_{\rm o}\,{\rm but}$ nonetheless a big step forward
 - EUROnu version shown here

4 MW, 5 GeV proton beam

proton driver

130 km baseline

Beta Beam

- Baseline Beta Beam facility comprises these sections
 - Proton Driver
 - °"light" SPL (≈4 GeV) and upgraded Linac 4
 - ISOL Target
 - spallation neutrons or direct protons
 - Ion Source
 - pulsed ECR
- Two concepts being explored: Low-Q version (⁶He, ¹⁸Ne)
- High-Q version (⁸Li,⁸B)

olinac, RCS, PS, SPS

•6900 m; 2500 m straight

- Acceleration

- Decay Ring

• Two options: Low-Q (baseline) and High-Q (alternative)

Neutrino Factory comprises these sections

- Proton Driver

Low Energy Neutrino Factory

Alternative 4 GeV NF design being explored at Fermilab

- motivated by
 - ${\scriptstyle \circ}\, \text{expectation}$ of reduced facility cost
 - energy well matched to Fermilab-DUSEL baseline
 - detector concept (magnetized TASD)
 capable of required performance at chosen energy
- ingredients same as IDS-NF design...but fewer of them
 - $_{\circ}$ less acceleration
 - \circ smaller decay ring
 - single baseline

- A common feature of *all* future neutrino facilities is the requirement for substantially increased quantity of data
 - \Rightarrow need for intense particle sources
 - \Rightarrow need for very large detectors
- Both needs represent major technical challenges
 - must extend today's state-of-the-art by factor of 5-10
- All current approaches to giving the requisite number of neutrinos rely on production of secondary, or even tertiary, beam

Strengths

- Superbeam
 - closest to today's technology
 - likely to be the least expensive (≠ inexpensive!)
- •Beta Beam
 - ability to make use of CERN infrastructure
 - potential synergy with nuclear physics interests on isotope production
 - clean beam (only electron neutrinos)
 - ${}_{\scriptscriptstyle 0}$ requires combination with Superbeam to fully extract the physics

Neutrino Factory

- best sensitivity (\Rightarrow best physics reach)
- both electron and muon neutrino beams available simultaneously
- synergy with intense muon and/or muon collider programs

- Challenges related mainly to intensity requirement
 - target capable of handling 4 MW of protons
 - horn capable of handling 4 MW of protons
 - o and operating at high repetition rate (50 Hz)
 - good charge selection (beam purity)
- Target resides in close proximity to horn
 - spatial constraints favor solid, or perhaps powder target
 materials compatibility issues make Hg target impractical
 - cooling is difficult
 - high radiation environment
 - need to repair is inevitable
 - hands-on repair will not be possible

• Recent studies (Zito et al., EUROnu WP2) based on

- low- or medium-Z target
- multiple targets + horns
 - ${\scriptstyle \circ}\, reduces$ power deposition
 - 4 MW \rightarrow 4 x 1 MW
 - oreduces repetition-rate requirement
 - 50 Hz \rightarrow 4 x 12.5 Hz
- single-horn optics (no reflector)
 - ${\scriptstyle \circ}\,$ optimized horn shape

Challenges of more complex proton beam optics and horn repair/replacement remain

Pebble-bed target

August 1, 2011

- Production of the required ion species at the required intensity
 - requires production, transport to ion source, ionization, bunching
 - ${}_{\scriptscriptstyle 0}$ target's ability to accommodate primary beam is sometimes limited to a few hundred kW
 - looks okay for ⁶He; ¹⁸Ne is challenging, but appears possible with ¹⁹F(p, 2n)
 - higher Z atoms are produced in multiple charge states, with the peak at 25-30% of the total intensity

- For high-Q isotopes (⁸Li, ⁸B) exploring new production concept proposed by C. Rubbia et al.
 - based on ionization cooling of ions to maintain equilibrium emittance
 - design currently studied by Benedetto et al.
 - $_{\circ}\,\text{main}$ drawback is required gas target thickness
 - 10⁴ times that of existing jet targets
 - need 5x more ions than for ⁶He, ¹⁸Ne
 - ${\scriptstyle \circ}\ \textit{possible}$ workaround is forward kinematics with liquid-film target

Accel. Strengths & Challenges - Zisman

• Collective effects (Hansen, Chance)

- transverse mode coupling in Decay Ring presently limits intensities
 - ${}_{\scriptscriptstyle 0}\,\text{exploring}$ modified ring designs to mitigate effect
 - low duty factor (0.5%) exacerbates this difficulty
- SPS may also present challenges

 ${\scriptstyle \circ}\, \text{work}$ to understand this in progress

	Bunch Intensity Limit, N _b th					
	[el2]	[Nbnom]	[Nbnom			
¹⁸ Ne	1.2	0.3	0.6			
⁶ He	10	2.1	1.0			
⁸ B	2.1	0.2	0.6			
⁸ Li	5.9	0.2	0.6			

				on Beta-Beams	
Ions	Fluxes [10 ¹⁸]	Years	$(\sin^2 2\theta_{13})_{min}$	NH, $(\sin^2 2\theta_{13})$ min	
⁶ He	$\bar{\Phi}_0 = 2.9$	5	5×10^{-4}	No Sensitivity	
¹⁸ Ne	$\Phi_0 = 1.1$	5		2,224	
⁸ Li	$\bar{\Phi}_0 \times 5$	5	2×10^{-4}	8×10^{-3}	
⁸ B	$\Phi_0 \times 5$	5			
⁶ He	$\bar{\Phi}_0 \times 2$	2	6×10^{-4}	No Sensitivity	
¹⁸ Ne	$\Phi_0/2$	8			
⁸ Li	$\bar{\Phi}_0 imes 2$	5	7×10^{-4}	$1.5 imes 10^{-2}$	
⁸ B	$\Phi_0 \times 2$	5			

A

- \cdot Baseline energy (γ = 100) too low for optimal physics reach
 - $-\gamma = 350$ preferred
 - implies very high-field dipoles in decay ring (>20 T)
 - $_{\circ}$ requires energy upgrade of SPS

- no current CERN plans for this

- Muons created as tertiary beam (p $\rightarrow \pi \rightarrow \mu$)
 - low production rate
 - $_{\rm o}\,\text{need}$ target that can tolerate multi-MW beam
 - large energy spread and transverse phase space
 - \circ need emittance cooling
 - ${}_{\scriptscriptstyle 0}$ high-acceptance acceleration system and decay ring
- Muons have short lifetime (2.2 μ s at rest)
 - puts premium on rapid beam manipulations
 - high-gradient RF cavities (in magnetic field for cooling)
 - ${\scriptstyle \circ}$ presently untested ionization cooling technique
 - $_{\circ}$ fast acceleration system

- Ionization cooling analogous to familiar SR damping process in electron storage rings
 - energy loss (SR or dE/dx) reduces $p_{x'}$, $p_{y'}$, p_z
 - energy gain (RF cavities) restores only p_z
 - repeating this reduces $p_{x,y}/p_z$

- $\boldsymbol{\cdot}$ There is also a heating term
 - for SR it is quantum excitation
 - for ionization cooling it is multiple scattering
- Balance between heating and cooling gives equilibrium emittance $\frac{d\varepsilon_N}{d\varepsilon_N} = \frac{1}{2} \frac{|dE_{\mu}|}{|\varepsilon_N|} \frac{\beta_{\perp}(0.014 \,\text{GeV})^2}{|\varepsilon_N|}$

$$\frac{d\sigma_{N}}{ds} = -\frac{1}{\beta^{2}} \left| \frac{\sigma_{N}}{ds} \right|^{2} \frac{\sigma_{N}}{E_{\mu}} + \frac{1}{2\beta^{3}} \frac{1}{2\beta^{3}$$

0

- prefer low β_{\perp} (strong focusing), large X_0 and dE/ds (H₂ is best)

- Proton beam parameters
 - desired proton intensity for Neutrino Factory is 4 MW
 - $_{\circ}\,$ e.g., 3.1 x 10^{15} p/s at 8 GeV or 6.2 x 10^{13} p/pulse at 50 Hz
 - desired rms bunch length is 1-3 ns to minimize intensity loss
 - $_{\circ}\,$ not easily done at high intensity and moderate energy

- Target
 - favored target concept based on Hg jet in 20-T solenoid
 - $_{\rm o}$ jet velocity of ~20 m/s establishes "new" target each beam pulse
 - magnet shielding is daunting, but appears manageable
 - alternative approaches (powder or solid targets) also being pursued within EUROnu

Accel. Strengths & Challenges - Zisman

NF Technical Challenges (4)

- \cdot Normal conducting RF in magnetic field
 - cooling channel requires this
 - 805-MHz experiments indicate substantial degradation of gradient in such conditions
 - initial 201-MHz tests show similar behavior
 - ${}_{\circ}\,\text{gas-filled}$ cavities avoid performance degradation in magnetic field
 - effects of intense ionizing radiation traversing gas now under study
 - first indications are that beam loading is severe

August 1, 2011

Accel. Strengths & Challenges - Zisman

\cdot I hold the view that

$\begin{array}{c} \text{Challenges} \rightarrow \text{Opportunities} \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\$

process is reversible

August 1, 2011

R&D Activities

- To transform challenges to opportunities, worldwide R&D efforts are under way
 - of most interest here are those of EUROnu and IDS-NF
 - ${}_{\circ}\text{U.S.}$ contributions to these studies via MAP

Superbeam

- main items are target and horn
 - ${\scriptstyle \circ}\, \text{proton}$ beam delivery also needs attention
- •Beta Beam
 - main items are ion production, collective effects, and beam loss issues

Neutrino Factory

— main items are target, cooling (MICE), and RF (MuCool)

• Superbeam

NOTE: only my personal view

- Is the layout of the proton beam transport compatible with horn repair or replacement?
- •Beta Beam
 - Given the complications of producing and capturing ⁸Li and ⁸B, and the need for 5× higher intensity, is the cost-benefit ratio for this option really favorable?
 - Are there limitations (operational or technical) in the baseline CERNbased scenario that are severe enough to justify consideration of a "green-field" site?

Neutrino Factory

- What combination of proton beam energy and bunch length is the best compromise for integrated muon beam intensity?
- Is the RF R&D plan well-focused or too broad?
- All
 - What time frame is needed for a funding proposal?

Summary

 Substantial progress being made toward design of accelerator-based neutrino facilities to study CP violation in the lepton sector

- challenges are being understood and overcome
 - ${}_{\scriptscriptstyle 0}$ experiments play a critical role in this task
- \cdot Work extends state-of-the-art in accelerator science
 - high-power targets, new cooling techniques, ion source development, rapid acceleration techniques,...
- Thanks to all my accelerator colleagues for sharing both their expertise and their enthusiasm