A 10 minutes mini-review on the flavor problem (mixing, CP-violation)

Based on "minus 10 minutes attack"

Hisakazu Minakata

Fully biased 10 minutes counterattack

The questions which we would like to discuss include... (André and Silvia)

- If θ_{13} is large, what can we learn about mixing?
- Is TBM still a good guiding principle, if the large θ_{13} hints hold?
- What can we learn about beyond 3-neutrino mixing (e.g. sterile neutrinos,...) in long baseline neutrino experiments?
- What do we need in order to achieve this aim (e.g. precision, near detectors...)?

Apparently θ_{13} is large

My prejudice: θ_{13} is large because ...

- It is natural to expect θ_{13} large because $U_{MNS} = U^{+}V$ and other 2 angles are large
- Apparently, it is the case T2K-6 events (I assume reactor confirms the large θ_{13})
- This argument breaks down if there is a reason for small θ_{13} symmetry !
- But if ~ 10 degree it falls into "anarchy regime"
- My favorite interpretation of θ_{13} ~ 10 degree: no symmetry which drive θ_{13} << 1

Fate of discrete symmetries

- You may ask: Are discrete symmetries for small θ_{13} still viable?
- Of course, one can "perturb" with large symmetry breaking term, but ...
- We know in particle physics a symmetry which is badly broken π vs. K meson masses, but for good reasons
- discrete symmetry can be the case if you find such reasoning

Beyond 3-neutrino mixing?

Unitarity NOT verified in lepton sector quark sector

- Unitarity violation/NSI very interesting window to new physics
- Hunting unitarity violation formulated, but in a (mildly) model-dependent way
- "Unitarity triangle" tried, but a long way
- Strategy to verify unitarity in LBL not so well known (I guess ..) need more efforts
- Related different approach: NSI (unitarity imposed, looking for new neutrino interactions)

Steriles?

- LSND-MiniBooNE-reactor anomaly would suggest sterile ν 's
- If θ_s is large, 0.01 < $\sin^2 2\theta_s$ < 0.1, they can be hunt by various methods
- By 10 g ¹⁴⁴Cs source in SNO+ (if KamLAND is busy)
- By Bugey like setting at a reactor
- If Δm^2 large, by Joyo nuclear reactor @ Tokai (small core size)

If θ_s is small, $\sin^2 2\theta_s \sim 0.001$,

- I don't know how ...
- By further run of MiniBooNE/MicroB?
- Two ICARUS T600 detectors @ CERN-PS

If confirmed (unitarity violation/sterile) = revolution in particle physics

Good time for experimenta lists

With large θ_{13} things are easier for EVERYBODY

How large is δ ?

- If no symmetry is behind $\mathsf{U}_{\mathsf{MNS}}\,\delta$ need not be constrained to be small
- In fact, no symmetry is known (I guess) to drive δ to 0 or π , apart from CP symmetry itself
- It is broken in quark sector to exist in lepton sector order unity

no reason δ must be

What do we need in order to achieve our goal?

- I assume reactor confirms large θ_{13}
- Then δ
- Everything in a single "lunch box" ?
- Natural choice would be ~megaton water Cherenkov, or ~100 kt liquid Ar, under the environment of severe v pollution super neutrino beams
- Mass hierarchy? \longrightarrow atmospheric ν
- Bonus: proton decay

Large θ_{13} makes things easier; mass hierarchy resolution by T2K II + atmospheric ν

Huber-Maltoni-Schwetz05

Nufact11 discussion session

News from other (related) fields

New data from MEG: $Br(\mu -> e\gamma) < 2.4 \times 10^{-12}$

"Higgs" bump?

Finally,

I failed to address absolute v mass:
KATRIN, double beta, cosmology ...

• I want to learn about: what is the role of neutrino factory if θ_{13} = 10 degree ?