NUFCICT 11 August 1-6, 2011 Geneva, Switzerland

Beta Beams

Elena Wildner, CERN
For the Beta Beam Collaboration

Beta Beams, Isotopes & Baselines

- Neutrino beam: decay of beta active isotopes in a decay ring
- Produce suitable beta (+/-) active isotopes
 - Available reaction energy of a specific isotope: Q
- Accelerate beta active isotopes
 - The ions will get a maximum gamma boost γ_{max} ($E_v \le 2\gamma_{max}Q$)
- γ_{max}
 - depends on the available accelerators
 - depends on the Z/A of the ion
 - is chosen for the physics reach wanted
- Merit factor: γ/Q
 - Lower flux with distance
 - Higher x-sections with energy
 - Higher flux with γ

High-Q and Low-Q pairs

Isotope	⁶ He	¹⁸ Ne
A/Z	3	1.8
decay	β-	β+
τ _{1/2} [s]	0.81	1.67
Q [MeV]	3.51	3.0

Isotope	⁸ Li	⁸ B
A/Z	2.7	1.6
decay	β	β+
τ _{1/2} [s]	0.83	0.77
Q [MeV]	12.96	13.92

Higher Q-value gives higher v-energy, better x-sections but needs longer baseline

CERN Beta Beams, Synoptic

Decay Ring: Bp ~ 500 Tm, B = ~6 T, C = ~6900 m, L_{ss} = ~2500 m, γ = 100, all ions

CERN Beta Beams, Synoptic

 $B\rho \sim 500$ Tm, B = ~6 T, C = ~6900 m, L_{ss} = ~2500 m, γ = 100, all ions

EUROnu physics

CPV

The systematic error estimation is important (detectors and beam)

Beta beam neutrino flux can be calculated with current monitors in the accelerator.

Pure e-neutrinos

Reduction of Suppression needed for atmospheric background!!!

CPV for the Fréjus option (6He&18Ne)

Courtesy E. Fernandez, P. Coloma, C. Hansen

Larger sin²2θ₁₃

- •Relax background suppression?
- Larger bunches permitted
- Less instabilities
- Higher neutrino fluxes
- Iterations necessary and ongoing

SF 2% seems sufficient for larger $\sin^2 2\theta_{13}$ (0.6% used up till now)

CPV - vFlux: Fréjus & Canfranc

Fréjus: 18 Ne (1.1 10^{18} v/year) & 6 He (1.1 10^{18} v/year), γ =100 Canfranc: 18 Ne (4.4 10^{17} v/year, γ =250) & 8 He (2.9 10^{18} v/year, γ =100) Other ion combinations may be efficient (A. Donini)

Negative delta, matter effects give degeneracies with the mass hierarchy. Larger flux: no degeneracies.

CPV: First optimization attempts

LCPV: Assymmetry

Vacuum, at 1st oscillation maximum

 $A\sim 1/11 (\sin 2\Theta_{13} \sin \delta)/(\sin^2 2\Theta_{13} + 0.002)$

Courtesy S. Parke

Mass Hierarchy

Canfranc, Beta Beam setting:

⁸Li@100 and ¹⁸Ne@250

Comparisons, how?

Systematic uncertainty to be re-evaluated

Wish:

 A document treating all systematic uncertainty for the 3 different facilities

For Beta Beams

- Detector WC up to 1.5-2 GeV
- Pure Beam (SB ~ 1%)
- Beam Spectrum well known
- 1% systematic errors on beam fluxes in far detector (SB 5%)
- Cross sections not well measured, 5-10%
- Close detector will help
 - Full scan with varying gamma
- Total systematic uncertainty not negligible!

Conclusion

- T2K: Optimization for excellent physics reach is ongoing
- We can now reduce the Suppression Factor for atmospheric background suppression (if T2K confirmed)
 - Neutrino flux will be increased
- Optimization of L/E
 - SPS can give gamma up to 250 for ¹⁸Ne, may be interesting now
- Systematic uncertainties need complete evaluation
 - Detector, WC but also Liquid Argon (EUROnu WP5)
 - Beam (alignment and current monitoring in accelerator)
 - To be included in the comparison analysis (all facilities)
- All results have to be iterated
 - Work on physics and accelerators in collaboration to be continued

support slides

Isotope production rates

Aim: 2.0 10¹³ for low-Q

Targets below MWatt is a considerable advantage!

Type	Beam	I [mA]	E [MeV]	P [kW]	Target	Isotope	Flux
ISOL(n)	SPL(p)	0.07	2000	200	W/BeO	⁶ He →	$> 5 \cdot 10^{13}$
ISOL	Linac4(p)	6	160	960	$^{23}\mathrm{Na^{19}F}$	¹⁸ Ne ₁	$> 1 \cdot 10^{13}$
P-ring	Linac(d)	0.160	25	4	7Li	$^8{ m Li}$	$> 1 \cdot 10^{12}$
P-ring	Linac(³ He)	0.160	25	4	⁶ Li	8 🗷	$> 8 \cdot 10^{11}$

More is possible

Planned experiments

NB:8Li can be produced in rates comparable to 6He using similar technology

T. Stora, P Valko, E. Benedetto, E. Wildner...

The Production Ring (8B and 8Li)

Supersonic gas jet target, stripper and absorber

Aachen Univ., GSI, CERN

⁷Li(d,p)⁸Li ⁶Li(³He,n)⁸B

Production of 8B and 8Li C. Rubbia, EUROnu proposal

- Gas Jet target proposed in FP7:
 - too high density would be needed
 - vacuum problems
- Direct Production (D. Neuffer) with liquid film targets
 - Collaboration ANL (Benedetto/Nolen)

- High-Q 8B and 8Li will not be considered for the time being
- We will not explore the low-Q gamma 350 option

Managing intensities: "Ion Cocktails"

Collective	effects	important
------------	---------	-----------

							•
SETUP	γ	Ions	Fluxes [10 ¹⁸]	Years	$(\sin^2 2\theta_{13})_{min}$	NH, $(\sin^2 2\theta_{13})_{min}$	
CERN-Frèjus, 1	100	$^6{ m He}$	$\Phi_0=2.9$	5	5×10^{-4}	No Sensitivity	
Ref. [1]		$^{18}{ m Ne}$	$\Phi_0=1.1$	5	l		
$L=130~\mathrm{Km}$						Less collective	effects
440 Kton (FV) WC							
CERN-Frèjus, 2	100	⁶ He	$ar{\Phi}_0 imes 2$	12	6×10^{-4}	No Sensitivity	
Ref. [1]		¹⁸ Ne	$\Phi_0/2$	8			
CERN-Frèjus, 3	100	⁶ He	$\bar{\Phi}_0 imes 2$	2	1×10^{-3}	No Sensitivity	
Ref. [1]		$^{18}{ m Ne}$	$\Phi_0/5$	8			
SETUP	γ	Ions	Fluxes [10 ¹⁸]	Years	$(\sin^2 2\theta_{13})_{min}$	NH, $(\sin^2 2\theta_{13})_{min}$	
CERN-Canfranc, 1	100	⁸ Li	$ar{\Phi}_0$	5	1.5×10^{-3}	3×10^{-2}	
Ref. [1]		$^{8}\mathrm{B}$	Φ_0	5			
$L=650~\mathrm{Km}$							
440 Kton (FV) WC							
CERN-Canfranc, 2	100	⁸ Li	$\bar{\Phi}_0 imes 2$	5	7×10^{-4}	1.5×10^{-2}	
Ref. [1]		$^{8}\mathrm{B}$	$\Phi_0 imes 2$	5			
CERN-Canfranc, 3	100	⁸ Li	$\bar{\Phi}_0 \times 5$	5	2×10^{-4}	8×10^{-3}	
Ref. [1]		$^{8}\mathrm{B}$	$\Phi_0 \times 5$	5			
CERN-Canfranc, 4	100	⁸ Li	$ar{\Phi}_0$	3	1.7×10^{-3}	3×10^{-2}	
Ref. [1]		$^{8}\mathrm{B}$	Φ_0	5			
		$^6{ m He}$	$ar{\Phi}_0$	2			
CERN-Canfranc, 5	100	⁸ Li	$\bar{\Phi}_0 imes 2$	3	7×10^{-4}	1.5×10^{-2}	
Ref. [1]		$^{8}\mathrm{B}$	$\Phi_0 imes 2$	5		Summary	by A. Donini
		$^6{ m He}$	$ar{\Phi}_0 imes 2$	2		Carrifically	by 7. Domin
CERN-Canfranc, 6	100	⁸ Li	$\bar{\Phi}_0 imes 5$	3	3×10^{-4}	8×10^{-3}	
Ref. [1]		^{8}B	$\Phi_0 imes 5$	5			
1		$^6{ m He}$	$\bar{\Phi}_0 \times 5$	2			19

2011

Collective Effects limits, Decay Ring

	Bunch	Bunch Intensity Limit, N _b th					
	[e12]	[N _b nom]	[Nbnom]				
¹⁸ Ne	0.6	0.1	0.3				
⁶ He ⁸ B	5.0	1.0	0.5				
	1.1	0.1	0.3				
⁸ Li	3.0	0.1	0.3				

	Ions	Fluxes [10 ¹⁸]	Years	$(\sin^2 2\theta_{13})_{min}$	NH, $(\sin^2 2\theta_{13})_{min}$
	⁶ He	$ar{\Phi}_0=2.9$	5	5×10^{-4}	No Sensitivity
	¹⁸ Ne	$\Phi_0 = 1.1$	5		
	⁸ Li	$\bar{\Phi}_0 \times 5$	5	2×10^{-4}	8×10^{-3}
	^{8}B	$\Phi_0 \times 5$	5		
ľ	⁶ He	$\bar{\Phi}_0 \times 2$	2	6×10^{-4}	No Sensitivity
1	¹⁸ Ne	$\Phi_0/2$	8		
	⁸ Li	$\bar{\Phi}_0 \times 2$	5	7×10^{-4}	1.5×10^{-2}
	^{8}B	$\Phi_0 \times 2$	5		

Only Transverse Mode Coupling Instabilities

Recent Encouraging results, redesigned results

	Bunch Intensity Limit, N _b th					
	[el2]	[N _b nom]	[Nbnom]			
¹⁸ Ne	1.2	0.3	0.6			
⁶ He	10	2.1	1.0			
8B 8Li	2.1	0.2	0.6			
	5.9	0.2	0.6			

	Ions	Fluxes [10 ¹⁸]	Years	$(\sin^2 2\theta_{13})_{min}$	NH, $(\sin^2 2\theta_{13})_{min}$
	⁶ He	$\Phi_0 = 2.9$	5	5×10^{-4}	No Sensitivity
1	¹⁸ Ne	$\Phi_0 = 1.1$	5		333
	⁸ Li	$\bar{\Phi}_0 \times 5$	5	2×10^{-4}	8×10^{-3}
	⁸ B	$\Phi_0 \times 5$	5		
	⁶ He	$\bar{\Phi}_0 \times 2$	2	6×10^{-4}	No Sensitivity
1	¹⁸ Ne ⁸ Li	$\Phi_0/2$	8		
	⁸ Li	$\bar{\Phi}_0 \times 2$	5	7×10^{-4}	1.5×10^{-2}
	^{8}B	$\Phi_0 \times 2$	5		

Phase slip factor changed

C. Hansen, CERN & A. Chance, CEA

Atm. Background suppression

10¹⁴ ions, ~0.5% duty (supression) factor can now be reduced Gives possibilities to give more neutrino flux

20 bunches, 5.2 ns long, distance 23*4 nanosseconds filling 1/11 of the Decay Ring, repeated every 23 microseconds

Work on HW feasibility by Cockroft institute/Lancaster Univ. G. Burt

Implementation and Costing

- How to chose a facilty?
- Performance/Cost
- Part of EUROnu mandate
- Synergy βB/SB
- Safety has to be included

Collection device

- Measurements/Analysis ongoing for the collected 8Li
- Direct kinematics is possible, efficiencies to be evaluated
- Setup and measurements for 8B production and collection ongoing

X-sections, Energies and Angles, Li and B

CN proposal: BETABEAM

⁸B PRODUCTION MEASUREMENT FOR THE FP7 BETA BEAM DESIGN STUDY

V.L. Kravchuk¹, E. Wildner², M. Cinausero¹, G. De Angelis¹, F. Gramegna¹, T. Marchi¹, G. Prete¹, E. Benedetto², C. Hansen², G. Collazuol³, M. Mezzetto³, G. Derosa⁴, V. Palladino⁴, E. Vardaci⁴

FOR THE EUROnu WP4 COLLABORATION

¹Laboratori Nazionali di Legnaro, Legnaro (PD), Italy ²CERN, Geneve, Switzerland

³Dipartimento di Fisica, Universita' di Padova and INFN sezione di Padova, Padova, Italy. ⁴Dipartimento di Fisica, Universita' di Napoli and INFN sezione di Napoli, Napoli, Italy.

> Spokesperson: V.L. <u>Kravchuk - kravchuk@lnl.infn.it</u> Spokesperson: E. Wildner <u>- Elena.Wildner@cern.ch</u>

$${}_{3}^{6}\text{Li} + {}_{2}^{3}\text{He} \rightarrow {}_{5}^{8}\text{B} + \text{n}$$

Measurements are finished!

INFN, Legnaro

60 GHz Source status

Conceptual design of the internal parts of the ECRIS prototype

Delivery of the GANIL 28 GHz gyrotron to LPSC LPSC-LNCMI discussions for experiments

Ion beam at 28 GHz with SEISM prototype (fall 2011) Magnetic field measurements, 30000 A (60 GHz)

00 A Power supply

Design of the High intensity beam line Follow-up the 60 GHz gyrotron building

The SEISM Collaboration

