Imperial College London K. Long; 10 August, 2011 DATEK PHI

Sensitivity and precision

Muon accelerators for particle physics

Conclusions

The Neutrino Factory

Sensitivity and precision

The Neutrino Factory:

Multiplicity of channels

Stored $\mu^- \rightarrow e^- v_\mu \overline{v}_e$ DisappearanceAppearance $\overline{v}_e \rightarrow \overline{v}_e \rightarrow e^+$ $\overline{v}_e \rightarrow \overline{v}_\mu \rightarrow \mu^+$ $\overline{v}_e \rightarrow \overline{v}_\tau \rightarrow \tau^+$ $\overline{v}_\mu \rightarrow v_\mu \rightarrow \mu^ v_\mu \rightarrow v_\mu \rightarrow \mu^ v_\mu \rightarrow v_e \rightarrow e^ v_\mu \rightarrow v_\tau \rightarrow \tau^-$

- Optimise discovery potential for CP and MH
 - Requirements:
 - Large v_e (\overline{v}_e) flux
 - Detailed study of sub-leading effects
 - (Large) high-energy
 v_e (v_e) flux
 - Optimise event rate at fixed L/E
 - Optimise MH sensitivity
 - Optimise CP sensitivity

θ₁₃:

Global analysis of oscillation data, including recent T2K and MINOS data, indicate evidence for $\theta_{13} > 0$ at 3σ

- Exciting new data!
- If confirmed, makes discovery of CP possible:
 - Almost certainly at Neutrino Factory
 - Increases motivation for precision determination of parameters and search for "non-standard effects"

Neutrino Factory performance:

- Discovery reach at 3σ extends down to $\sin^2 2 \theta_{13} \sim 5 \times 10^{-5}$
 - Should θ_{13} to be shown to be > 0 before start of Neutrino Factory project:
 - Re-optimisation of baseline:

- 10 GeV muon energy serving a single 100 kTon MIND at a baseline of 2000 km

gives excellent performance

Neutrino Factory performance:

- Precision:
 - Determination of deviation of θ_{23} from $\pi/4$: • Uncertainty ~ ±4° at 99% C.L.

Sensitivity to non-standard interactions:

The Neutrino Factory:

Muon accelerators for particle physics

Opportunities:

- Lepton-antilepton collisions:
 - Multi-TeV Muon Collider with small footprint
 - Critical issue: L > 10³⁴ cm⁻²
- Neutrino beams for study of neutrino oscillation:
 - Neutrino Factory delivering high-energy v_e & v_u beams
 - Critical issue: muon rate of > 10¹⁴ s⁻¹
- Search for charged lepton flavour violation:
 - Intense, well controlled muon beams
 - Critical issues:
 - Extinction of signals arising from "Standard Model processes"
- Cross section measurement and search for sterile neutrinos:
 - Race-track muon storage ring has potential to allow:
 - Precise measurement of v_eN cross sections
 - Study of LNSD/MiniBOONE anomolies

Critical issues:

- High-power (multi-MW), pulsed, proton source
 And particle-production target to match, MERIT
- Phase-space compression of muon beams:
 - Short muon lifetime requires novel technique:
 - Ionization cooling: proof-of-principle experiment, MICE
- Rapid acceleration:
 - Exploit time dilation to suppress muon decay
 - Fixed Field Alternating Gradient Acceleration
 - Novel magnet technology allows acceleration without magnet ramp
 - Proof of principle:
 - EMMA: under study at the Daresbury Laboratory

Baseline target: proof of principle: MERIT: AC10: WEPE078

- 'Disruption length': 28 cm
- 'Refill' time: 14 ms
 - Corresponds to 70 Hz
- Hence:
 - Demonstrated operation at:
 - 60 kJ × 70 Hz = 8 MW

- 20 m/s liquid Hg jet in 15 T B field
- Exposed to CERN PS proton beam:
 - Beam pulse energy = 115 kJ
 - Reached 30 tera protons at 24 GeV

- MICE: proof of principle:
 - Design, build, commission and operate a realistic section of cooling channel
 - Measure its performance in a variety of modes of operation and beam conditions
 - Results will allow Neutrino Factory complex to be optimised

MICE

Staged implementation:

- Step I:
 - Characterization of beam complete:
 - MICE Muon Beam delivers range of momentum and emittance required by MICE
- Step IV:
 - Integration complete Q3 2012
 - Running with a variety of absorbers scheduled for 1 year
 - Break in running if ready to implement Step V
 - Implementation of Step V by Q2 2014 will allow Step V running before long ISIS shutdown [Aug14 to Feb15]
- Steps V and VI will be implemented starting at the end of Step IV data taking

Complete. paper in preparation $\underbrace{\text{Staged implementation:}}_{(6,240) \mu^{*}} \underbrace{\text{Staged implementation:}}_{(6$

- Step I:
 - Characterization of beam complete:
 - MICE Muon Beam delivers momentum and emittance required by MICE

Reconstructed muon tracks/(Vms)/(3.2 ms spill)

		μ^- rate			μ^+ rate		
		P_z (MeV/c)			P_z (MeV/c)		
		140	200	240	140	200	240
ϵ_N (mm·rad)	3	4.1	6.3	4.9	16.8	33.1	33.0
		±0.2	±0.2	±0.2	±1.8	±3.2	±2.6
	6	4.1	4.8	4.5	17.8	31.0	31.7
		±0.4	±0.2	±0.2	±1.8	±2.0	±2.0
	10	4.6	5.4	4.4	21.6	34.0	26.1
		±0.2	±0.2	± 0.1	±2.2	± 2.5	± 1.5

Dobbs et al (Imperial)

Muon acceleration: proof of principle:

- EMMA at the Daresbury Laboratory
 - Electron Model of Muon Acceleration
 - Aka:
 - Electron Model of Many Applications

- Installation complete;
- Commissioning underway
- First extracted beam: 15Mar11

The Neutrino Factory

Conclusions:

International Design Study for the Neutrino Factory

IDS-NF-020

Interim Design Report

The IDS-NF collaboration

See IDS-NF site: https://www.ids-nf.org/

Bulgaria	Sofia				
France	IPHC Strasbourg				
Germany	MPI Heidelberg, MPI Munich, Würzburg				
India	HCRI Allahabad, SINP Kolkata, TIFR Mumbai				
Italy	Milano Bicocca, Napoli, Padova, Roma III				
Japan	Kyoto, Osaka, Tokyo Met.				
\mathbf{Spain}	Madrid, Valencia				
Russia	INRR Moscow				
$\mathbf{Switzerland}$	CERN, Geneva				
UK	Brunel, DL, Glasgow, Imperial, IPPP Durham,				
	Oxford, RAL, Sheffield, Warwick				
\mathbf{USA}	BNL, FNAL, JLab, LBNL, Mississippi, MSU, Muons Inc.,				
	Northwestern, ORNL, Princeton, Riverside, Stony Brook				
	South Carolina, Virginia Tech., UCLA				

EUROnu and the IDS-NF

EUROnu is the European contribution to the IDS-NF

Conclusions:

- The Neutrino Factory:
 - Best discovery reach
 - Best precision:
 - But need to define agreed figure of merit
 - Need to assess degree to which the unique flexibility of the Neutrino Factory will allow the systematics to be controlled
 - Best sensitivity to non-standard interactions
- The International Design Study for the Neutrino Factory:
 - Collaboration energetic and ambitious!
 - IDR 2011; RDR 2012/13
 - EUROnu: encompasses and coordinates European contributions
- Baseline established and documented in the IDR
 - Alternatives to baseline retained to mitigate risks
- International hardware R&D programme
 - Addresses each of key issues in accelerator facility
 - MERIT, EMMA, MICE
- Scientific imperative:
 - Make the Neutrino Factory an option for the field!