WG2 Summary

Mike Kordosky (W&M) Juan Nieves (IFIC) Masashi Yokoyama (Tokyo)

August 6, 2011

13th International Workshop on Neutrino Factories, Super Beams and Beta Beams CERN/UNIGE Aug 1-6, 2011

Questions from NuFact 2010

- 1) The puzzle of CC QE cross-sections and M_A
 - "Recent" and "older" experiments disagree
 - HE and LE experiments disagree
 - "Bubble chamber" and other experiments disagree
 - (some) experiments and theory disagree
 - Or do they? → Significant progress
- 2) Precision cross-section measurements
 - How well can present beams & expts do?
 - What could be done with a mini-v factory (μ -SR)?
- 3) Near detector technology: can <my favorite technology> be used in a ND for a superbeam/NF/β-beam?

From the Round Table

• Jim Strait asks:

"If you didn't have a neutrino factory, how precise a measurement of parameters can be done with superbeams before reaching their limitations? What "external" measurements, e.g. particle production, neutrino cross-sections, etc., can be done to improve the current systematic error limits on superbeam experiments and what are the ultimately limiting systematic errors?

From the Round Table

• Jim Strait asks:

"If you didn't have a neutrino factory, how precise a measurement of parameters can be done with superbeams before reaching their limitations? What "external" measurements, e.g. particle production, neutrino cross-sections, etc., can be done to improve the current systematic error limits on superbeam experiments and what are the ultimately limiting systematic errors?"

SciBoone

B. Louis MiniBoone

 $d\sigma/dQ^2$ depends on EM form factors + axial form factor only measured in ν scattering

Expect $M_A \approx 1.0 \pm 0.05 \rightarrow$ determines norm & shape

B. Ziemer Minerva

Theorists:

Experiments may be confusing two similar processes

Nieves, Martini, Benhar

Mike Kordosky, W^m & Mary

 W^+

 π, ρ, \dots

MEC/2p2h

cause the cross-section to increase at low energy

Nieves, Martini, Benhar

Lessons Learned

not only from the QEL saga

- Apparently simple processes are not so simple
- We need to be careful when defining what we mean by "quasielastic", "coherent pion", etc.
- Experiments should try to make model independent statements
 - M_A fit bad $\leftrightarrow d^2\sigma/dpd\theta$ good
 - Avoid integrating over flux
 - Also, great care to state kinematic limits and acceptance correct Ex: $d\sigma/dt~dE_{\nu}$ for 1π events with $p_{\pi}>0.3 \text{GeV/c}$, $p_{\mu}>0.5~\text{GeV/c}$ and $\theta_{\mu}<35^{\circ}$ and extra energy <50~MeV
- Theorists: please contribute models to MC codes! Make them work over a broad energy range and for many A, even if a little "dirty"
 - experiments are used to dirty and we like it.

Precision Cross-sections

- Future experiments: Minerva, ND280 and LAr all have low hadron thresholds, good resolution
 - Minerva: Perdue, Ziemer, Devan
 - T2K: Brooke-Roberge, Ikeda, McCauley
 - LAr: Palamara
- They need to make enough measurements to inform theory and allow MC to predict less capable experiments
 - Ankowski, Hayato, Nakamura, Sobczyk
- Also, explore QCD/PDFs
 - Lalakulich, Morfin, Yang
- Problem is the neutrino flux

fact

Precision Cross-sections

NA61/SHINE/T2K

Posiadala Di Luise Abgrall Galymov

Cerutti (Fluka)

Mike Kordosky, $W^{\underline{m}}$ & Mary

Precision Cross-sections

- MINERvA will begin by tuning to NA49 pC @158 GeV/c
 - Additional handles from μ -monitors and beam flexibility
 - But a long target measurement may be needed. LBNE would probably find this useful.
- Only accounting for flux uncertainty, you may be able to do 5-10% absolute. Ratios better.
- A μ -SR could be used to push errors down further.

fact

NuFact ND Technology

- Major requirement is to measure the ν_μ flux to a precision of $\sim\!1\%$
- The suggestion is to measure ve \rightarrow ve and ν_{μ} e $\rightarrow \mu \nu_{e}$
- These interactions are very forward so the detector has to be able to resolve small scattering angle
- Currently considering SciFi and/or straw chambers followed by plastic scintillator.

- 1)What program of measurements is needed to reduce the uncertainty in v_{τ} CC crosssection?
- 2) two nucleon mechanisms (NN) / meson exchange currents (MEC)
 - How do we get treatment of NN/MEC in MC codes used by T2K/Minerva/etc?
 - How do we distinguish, experimentally, between NN/MEC and FSI? Can ND280/Minerva/LAr see these events?
 - Clarify the effect on MiniBoone/MINOS/SK oscillation analyses. Talk by Meloni (WG1)
- 3)List a set of cross-sections that can be carefully defined and measured by experiments and computed theoretically to reduce systematics for oscillation experiments.
- 4)How should MC code improvements be prioritized? What specific changes should be made to common codes: GENIE/NEUT/NuWro,etc.

fact

Backups