Opportunities for neutrino experiments at ISOLDE

Tânia Melo MendonçaIFIMUP, Porto University and CERN

Laboratoire de Physique Subatomique et de Cosmologie

Outline

Beta beams within the Eurisol scenario

Production of pure and intense v_e and anti- v_e from β decay of radioactive ions circulating in a storage ring based on existing technology and machines

Production of ¹⁸Ne

- Oxide targets
- Molten salts targets

Summary

Physics reach of different future facilities

E.F. Martinez, http://arxiv.org/abs/0912.3804 http://arxiv.org/abs/hep-ph/0603261

Eurisol beta beam facility

Production of v and anti-v from ⁶He and ¹⁸Ne baseline ions:

- 2.9 x10¹⁹ antineutrinos/10 yrs from ⁶He (3(.3) x10¹³ 6 He/s)
- 1.1 x10¹⁹ neutrinos/10 yrs from ¹⁸Ne (2(.1) x10¹³ ¹⁸Ne/s)

Based on existing technology and machines

- Rapid cycling synchrotron
- -Use of existing machines PS and SPS

-Ion production through ISOL technique

- Decay ring + detection

P. Zuchelli, Phys. Lett. B (2002)

- Storage ring facility at ISOLDE

Production of radioactive ion beams based on the ISOL technique

Discussions around implementation of a storage ring for radioactive or stable ions

Source of v_e and anti- v_e at CERN?

Imagerie @ 2010 DigitalGlobe Cones/Spot Isoage, GeoEve, IGN-France Pontees Cartographiques @ 2010

55m Gamma ~1.01 (~1-10MeV/u)

Technical choices for isotopes and targets determined by:

- Efficient production channels (high production cross-section σ)
- Isotopes properties $(t_{1/2}, release properties)$
- Side effects (primary beam penetration range, heating, chemistry, ...)
- Baseline ions: ⁶He ($T_{1/2}$ =0.8 s, Q_{β} =3.5 MeV) and ¹⁸Ne ($T_{1/2}$ =1.67 s, Q_{β} =3.3 MeV)

Threshold: **0.6 MeV** Peak cross-section: **105 mbarn (3MeV)**

 ${}_{2}^{6}He^{2+}(T_{1/2} = 0.8s) \rightarrow {}_{3}^{6}Li + e^{-} + \overline{v}$ $Q_{\beta^{-}} = 3.51 \,\text{MeV}$

> Production of $anti-v_e$ out of the target $\approx 3 \times 10^{13}$ ⁶He/s

⁶He production with neutrons on BeO target

Production of ¹⁸Ne for v_e using oxide targets

¹⁶O(³He,n)¹⁸Ne in thick MgO target

Direct spallation of 1 GeV protons onto thick oxide targets Al (p,X) ¹⁸Ne

2x10¹³ ¹⁸Ne/s for 170 mA and 21 MeV Intensity reduced for 30 MeV

~3x10^{12 18}Ne/s Further reduction due to extraction losses

Production of ¹⁸Ne for v_e using molten salts

- Molten salts tested and operated at ISOLDE (CERN 81-09)
 Molten salt targets (LiF): validated at Louvain-la-Neuve using 9 kW, 30 MeV proton beam
- Cross-sections simulations using the TALYS code (in collaboration with Komenius University, Bratislava, Slovakia)

Upcoming activities

Prototype and tests:

-static sodium molten salt unit at CERN/ISOLDE (IS509, November 2011, collab. R. Hodak, Slovakia)

-molten salt loop (in collaboration with LPSC/Grenoble)

TALYS production code benchmarking

M. Loiselet, S. Mitrofanov, Louvain La Neuve

A.J. Koning, S. Hilaire, M.C. Duijvestijn, "TALYS-1.0" Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, editors O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray, EDP Sciences, 2008, p. 211-214

M.C. Lagunas-Solar in Proc. of the IAEA consultants' meeting in data requirements for medical radioisotopes production, INDC(NDS)-195/GZ, 1988, p.55

P.Valko

Required beam current and power for a constant yield 10^{13 18}Ne/s

Molten salt MW range ISOL target

Production of ¹⁸Ne for v_{e} using molten salts

Conceptual Na target loop for ¹⁸Ne production $(^{23}Na(p, X)^{18}Ne, ^{19}F(p, 2n\alpha)^{18}Ne)$

T. Stora, P. Valko

Salt composition selection

Molten salts are well known and characterized concerning physical properties and engineering (ORNL reports)Selection of a suitable eutectic comprising Na and F nuclei:

Melting point of NaF is cca 1000 °C! \rightarrow mixture with Be, Zr, B

Salt	Composition [mol %]	Melting point [°C]	Density [g/cm3] (700 °C)	Viscosity [cP](700°C)	Vapor pressure [mmHg](900°C)	Yield protons 6mA 160MeV	Yield ³ He 6mA 160MeV
NaF-BeF ₂	57 - 43	340	2.01	7	1.4	8.8E+012	7.1E+012
NaF-NaBF ₄	8 - 92	385	1.75	0.9	9500	8.4E+012	6.9E+012
NaF-ZrF ₄	60 - 40	500	3.14	5.1	5.1	1.0E+013	8.2E+012

D.F. Williams, Assessment of Candidate Molten Salt Coolants for the NGNP/NHI Heat-Transfer loop, ORNL/TM-2006/69, Oak Ridge National Laboratory, Oak Ridge, TN (2006)

Molten salt loop container selection

Candidate material	Candidate material Salt corrosion A resistance		Long-term strength at 1000 °C	Highest usage temperature [°C]
Hastelloy N alloy*	Excellent Good		Very good	870
Haynes 242*	Excellent	Good	Very good	900
Alloy 800H or HT	Poor-fair	Good	Very good	980
Haynes 214*	Very good	Good	Good	1000
MA 956	Very good	Good	Good	5
MA 754	Verygood	Good	Good	5
Cast Ni superalloys	Very good	Good	Good	?

* Nickel based alloys

O. Benes, el. al., ALISA, Review Report on Liquid Salts for Various Application, version V4 Haynes International, Technical brief

Haynes 242 alloy is a promising candidate for application up to 750°C

	Ni	Мо	Cr	Fe	Со	Mn	Si	Al	Cu
Haynes 242	65	25	8	2	2.5	0.8	0.8	0.5	0.5

Scaling of the irradiation chamber

For $\Delta T = 100 \text{ °C}$, $C_p = 1.17 \text{ J.g}^{-1}$.K⁻¹, flow rate needed ≈ 2.1 L/s

Size of the steel window is $\approx 360 \text{ cm}^2$, e.g. (15x24) cm² Projected range in NaF-ZrF₄ is 7.5 cm

Size of the chamber:

(The Stopping and Range of Ions in Matter) **Deposited beam** Stoppingpower **Position on axis** power 6mA, [MeV] [cm] 160MeV [kŴ] 1 12 74 2 13 78 3 83 14 4 15 90 5 16 99 6 19 111 7 22 133 8 30 178 126 756 Total target Total dump 31 186 **Total window** 3 18 (1 mm thick)

Cooling of the window (10 kW for 0.5 mm thickness) is done with the circulating molten salt.

J.A. Lane, H.G. MacPherson, F. Maslan, Fluid Fuel Reactor, Chapter 13, Addison-Wesley, Reading, Mass. (1958)

Calculated with SRIM

Scaling of the diffusion chamber

E. Noah @ IPUL Latvia Molten Pb/Bi loop prototype EURISOL DS

Diffusion coefficients D = (2-4) $\times 10^{-5}$ cm².s⁻¹ for Kr and Xe

D estimate at (**4-8**) **x10⁻⁵ cm².s⁻¹** for **Ne** Mean diff. time **0.13 s** for **5 x1<u>0⁻⁵ cm².s⁻¹</u>**

Diffusion coefficient [mm ² .s ⁻¹]	Hole radius [mm]	Released fraction Cylinder	Released fraction Sphere
1.0E-3	0.25	0.35	0.47
2.5E-3	0.25	0.5	0.63
5.0E-3	0.25	0.64	0.76
1.0E-3	0.1	0.68	0.79
2.5E-3	0.1	0.83	0.9
5.0E-3	0.1	0.91	0.95

M. Fujioka, Y. Arai, Diffusion of Radioisotopes from Solids in the form of Foils, Fibers and Particles, Nucl. Instr. and Meth. 186 (1981) 409

R.J. Kedl, A. Houtzeel, ORNL-4069 (1967)

Conclusions

The status of ¹⁸Ne production is reviewed

Molten salt targets as good candidates for ¹⁸Ne production

Proposed prototype and tests in NaF-ZrF₄ salt: -Static sodium molten salt unit at CERN/ISOLDE (IS509, November 2011)

-Diffusion chamber (in collaboration with LPSC/Grenoble)

- Physical characterization of molten salt (Ne diffusion, surface tension,...)

Thank you!