J-PARC MUSE H-Line Optimization for the g-2/EDM and MuHFS experiments Akihisa TOYODA, KEK

Outline

- g-2/EDM beamline Final Focus(FF) optimization
 - Requirements
 - Option 1: 1-Solenoid case
 - Option 2: 3-Quads case
 - Option 3: 1-Solenoid + 3-Quads case
 - Summary
- MuHFS beamline FF optimization
 - Requirements
 - 3-Quads + HFS magnet case
 - Summary

g-2/EDM beamline: Final focus

Requirements

- Transmission: as high as possible
- Focus point size < 4 cm φ
 - Small focus point helps to increase laser density.
- Leakage field of final focus magnets: as small as possible
 - This may affect slow muon beam transport

g-2/EDM BL: 1 Solenoid case

G₄BL

Profile @ FF x 1.7 cm, xp 38.5 mrad , 87.5 % inside 40 φ y 1.8 cm, yp 48.2 mrad

g-2/EDM BL: hs6 field by G4BL

g-2/EDM BL: 3 Quads case (w/ hs5 tuning)

Profile @ FF **x** 3.5 cm, xp 46.9 mrad, 63.7 % inside 40 φ **y** 0.8 cm, yp 97.8 mrad

g-2/EDM BL: 1 Sol +3 Quads case

Profile @ FF x 2.1 cm, xp 50.6 mrad, 83.4 % inside 40 φ y 1.1 cm, yp 95.7 mrad

Summary and future plans: g-2/EDM

- Option 1: 1 solenoid for FF
 - Beam size is small: σx 1.7 cm, σy 1.8 cm, 87.5 % inside 40 ϕ .
 - Distance between solenoid end and FF is 0.4 m
 - Leakage field to FF is as high as 0.07 T, thus some magnetic shield is necessary.
- Option 2: 3 Quads (+ hs5 tuning)
 - Beam size is: σx 3.5 cm, σy 0.8 cm, 63.7 % inside 40 φ.
 - Distance between last Q end and FF is 0.6 m
- Option 3: 1 solenoid + 3 Quads
 - Beam size is small: σx 2.1 cm, σy 1.1 cm, 83.4 % inside 40 ϕ .
 - Distance between last Q end and FF is 0.6 m
- Future plans
 - 3 Quads + hs1-4 tuning to maximize intensity inside 40 ϕ .
 - Estimation of Q leakage field to FF
 - Short version

MuHFS beamline: Final focus

Requirements

- Transmission: as high as possible
- Focus point size $< 6 \text{ cm } \phi$
 - all muons inside good field region of HFS magnet (20 cmφ)
 - Not so difficult due to high HFS solenoid field
- Momentum spread: muon stopping distribution
 - all muons inside good field region of HFS magnet (30 cm long)
- Leakage field of final focus magnets: less than 1.7 gauss(100 ppm)
 - limit of magnetic field correction by HFS magnet Shim coil

MuHFS BL: 3 Quads No HFS case

MuHFS: HFS magnetic field

Consistent with Opera calculation by Sasaki-san

MuHFS: HFS magnetic field

MuHFS: HFS leakage field effect @ hq3 end

MuHFS BL: 3 Quads+HFS

Profile @ FF x 1.3 cm, xp 161.5 mrad, 93.6 % transmission y 1.3 cm, yp 137.4 mrad

Summary and future plans: MuHFS

- 3 Quads + HFS magnet for FF
 - Beam size is small: σx 1.3 cm, σy 1.3 cm, 93.6 % transmission
 - Distance between last Q end and FF is 2.3 m
 - Leakage field at last Q is as small as 0.005 T
- Future plans
 - Leakage field of beamline magnets in HFS magnet region
 - Muon stopping distribution estimation

Spare slides

g-2: 1 Sol profile

g-2: 1 Sol profile

g-2: 3 Quads profile

g-2: 3 Quads profile

g-2: 1 Sol+3 Quads profile

g-2: 1 Sol+3 Quads profile

MuHFS: 3 Quads profile

MuHFS: 3 Quads profile

MuHFS: 3 Quads profile@hfs entrance

MuHFS: 3 Quads profile profile@hfs entrance

Q fringing field

hqı without fringe parameters

z [mm]

Q fringing field

hq1 with dq2 fringe parameters, FieldLength=506.037 param=0.5873,5.894, -0.5713,5.784, 2.947,-1.054

z [mm]

Q fringing field

hqı with fringe parameters, FieldLength=506.037 param=0.0 ,0.0, 0.0,0.0, 0.0,0.0

Q fringing field w/ HFS mag.

Profile @ FF, w/o Q fringe w/ HFS RMSx 1.5 cm, RMSy 2.6 cm 66.5 % transmission

Profile @ FF, w/ Q fringe w/ HFS RMSx 1.5 cm, RMSy 2.6 cm 71.4 % transmission

hb2 end profile w/o, w/ HFS mag

HFS field map at around Quads

Mag. field for each coil

Mag. field w/ maxZ correction

hb2 end profile w/o, w/ HFS mag

g-2 BL: optimization by transport

g-2 BL: transport result with G4BL magnetic field

MuHFS BL: optimization by transport

G₄BL

hq1: 0.069 T @ pole

hq2: -0.117 T @ pole

hq3: 0.109 T @ pole

x 2.1 cm xp 70.0 mrad y 3.6 cm yp 45.6 mrad