The Final Measurement of the Muon Decay Parameters from the TWIST Experiment

Ryan Bayes For the TRIUMF Weak Interaction Symmetry Test Collaboration

School of Physics and Astronomy University of Glasgow

NUFACT 2011

Outline

Introduction

2 TWIST Apparatus

3 Analysis

4 Systematics

5 Physics Results

6 Conclusions

Introduction Th

Theory

Standard Model Weak Interactions

< 47 ▶

Muon Decay as a Probe for the Weak Interaction

General Lorentz invariant, derivative-free, interaction¹

$$\mathcal{M} = rac{4G_{F}}{\sqrt{2}}\sum_{\substack{\gamma=\mathcal{S},\mathcal{V},\mathcal{T}\ \epsilon,\mu=\mathcal{R},\mathcal{L}}}g_{\epsilon\mu}^{\gamma}\langlear{e}_{\epsilon}|\Gamma^{\gamma}|(
u_{e})_{n}
angle\langle(ar{
u}_{\mu})_{m}|\Gamma_{\gamma}|\mu_{\mu}
angle.$$

General Case

- I9 degrees of freedom:
 - 12 complex parameters
 - $g_{II}^T \equiv 0, g_{BB}^T \equiv 0$
 - Required to be unitary
- In SM $g_{II}^V = 1$, all others zero.

$$oldsymbol{Q}_{\epsilon\mu}=rac{1}{4}|oldsymbol{g}_{\epsilon\mu}^{S}|^{2}\!+\!|oldsymbol{g}_{\epsilon\mu}^{V}|^{2}\!+\!3(1\!-\!\delta_{\epsilon\mu})|oldsymbol{g}_{\epsilon\mu}^{T}|^{2}$$

¹W. Fetscher, H.J. Gerber, and K.F. Johnson, Phys. Lett. B173 (1986) 102

Muon Decay as a Probe for the Weak Interaction

General Lorentz invariant, derivative-free, interaction¹

$$\mathcal{M} = rac{4G_F}{\sqrt{2}}\sum_{\substack{\gamma=\mathcal{S},\mathcal{V},\mathcal{T}\ \epsilon,\mu=\mathcal{R},\mathcal{L}}}g_{\epsilon\mu}^\gamma \langle ar{e}_\epsilon | \mathsf{\Gamma}^\gamma| (
u_e)_n
angle \langle (ar{
u}_\mu)_m | \mathsf{\Gamma}_\gamma| \mu_\mu
angle.$$

General Case

- I9 degrees of freedom:
 - 12 complex parameters
 - $g_{II}^T \equiv 0, g_{BB}^T \equiv 0$
 - Required to be unitary
- In SM $g_{II}^V = 1$, all others zero.

$$oldsymbol{Q}_{\epsilon\mu}=rac{1}{4}|oldsymbol{g}_{\epsilon\mu}^{S}|^{2}\!+\!|oldsymbol{g}_{\epsilon\mu}^{V}|^{2}\!+\!3(1\!-\!\delta_{\epsilon\mu})|oldsymbol{g}_{\epsilon\mu}^{T}|^{2}$$

¹W. Fetscher, H.J. Gerber, and K.F. Johnson, Phys. Lett. B173 (1986) 102

Decay Spectrum Parametrization

• Given in energy and angle as ²

$$\frac{\partial^2 \Gamma}{\partial x \partial \cos \theta} = \frac{m_{\mu}}{4\pi^3} W_{e\mu}^4 G_F^2 \left(F(x) + |P_{\mu}| \cos \theta G(x) \right) + R.C.,$$

Decay Spectrum Parametrization

Given in energy and angle as ²

$$\frac{\partial^2 \Gamma}{\partial x \partial \cos \theta} = \frac{m_{\mu}}{4\pi^3} W_{e\mu}^4 G_F^2 \left(F(x) + |P_{\mu}| \cos \theta G(x) \right) + R.C.,$$

²K. Nakamura et al. (Particle Data Group), J. Phys. G **37**, 075021 (2010)

Radiative Corrections

- Highest order correction contributes variations in spectrum at 10⁻⁵ level
- Known second order leading logarithmic corrections make this measurement possible.³
- Contribution of higher order corrections represent systematic uncertainties.

³Arbuzov et. al., PRD65 (2002) 1130067

R. Bayes (University of Glasgow)

TWIST Measurement

A D M A A A M M

Measurements of Muon Decay Parameters

State before 2003

- 0.7518 ± 0.0026 ρ
- δ $0.7486 \pm 0.0026 \pm 0.0026$
- $1.0027 \pm 0.0079 \pm 0.0030$ È

Derenzo, Phys. Rev. 181 (1969) 1854 Balke, PRD 37 (1988) 587 Beltrami, Phys. Lett. B194 (1987) 326

TWIST Purpose

- Order of magnitude improvement in precision
- Explicitly test weak model predictions
- Use the shape of the spectrum in p and $\cos\theta$ to determine ρ , δ , and $P_{\mu}\xi$

TWIST Experiment

TWIST Experiment

TWIST Experiment

TWIST Spectrometer

R. Bayes (University of Glasgow)

< 同 > < ∃ >

Drift Chambers

Analysis

Reconstruction of Decay events

- Pattern recognition using PC times and DC wire centres
- Helix fits completed using least squares fit with drift distances

Analysis

Reconstruction of Decay events

- Pattern recognition using PC times and DC wire centres
- Helix fits completed using least squares fit with drift distances

Data Used in Analysis

Silver Target						
Cirver rarget			Alumi	Aluminum Target		
Set	Runs	Description	Set	Buns	Description	
68	619	Nominal settings	83	97/	Nominal with DS	
70	855	B=1.96 T	00	5/4	hoam nackago	
71	771	B=2.04 T	04	074	Neminal without	
72	979	TEC in data set	04	0/4		
74	549	Nominal settings			DS beam раск-	
75	838	Nominal settings			age	
76	600	Nie steered dete	86	119	Mis-steered	
76	009	Mis-sleered data	87	908	Nominal settings	
		set	91	241	Low Momentum	
			92	316	Low Momentum	

- data run \approx 800000 events
- $\bullet~Total \approx 10^{10}~events$

93

533

Low Momentum

Analysis

Event Selection

TWIST Analysis Overview

< 17 ▶

Analysis

Event Selection

TWIST Analysis Overview

R. Bayes (University of Glasgow)

NUFACT 2011 13 / 35

Spectrum Fits

• Sum of simulated spectra used as fitting function

• Parameters minimized using a χ^2 statistic.

Fit Quality

- All data sets: 0.5×10^9 events used in fits
- Simulation composed of 2.7 times data statistics

Endpoint Calibration

- Determine differences between data and sim endpoint spectra
- Calibration applied to correct for differences

Monte Carlo Validation: Upstream Stops

- Stop muon in upstream PCs
- Fit positron tracks upstream and downstream of target
- Physics independent characterization of detector system

Monte Carlo Validation: Upstream Stops

- Stop muon in upstream PCs
- Fit positron tracks upstream and downstream of target
- Physics independent characterization of detector system

Analysis Validation

Upstream Stops: Momentum Response

GEANT 3 simulation not tuned to produce matches

R. Bayes (University of Glasgow)

TWIST Measurement

Systematics

Systematics Summary

Common Pol. Al tgt Ag tgt μ^+

Momentum Calibration ρ Chamber Response Radiative Corrections n δ Resolution ξ Positron Interactions Others Ag Bremsstrahlung rate Ag Thickness/stop position Ag Statistical Al Bremsstrahlung rate AI Thickness/stop position Al Statistical Depolarization, fringe field Depolarization, muon target π decays in beamline Weighted total systematic Weighted total statistical TOTAL -10 -5 0 5 15 20 10 Systematic Uncertainties ($\times 10^4$)

Systematics categorized as

- Common
- Silver target only
- Aluminium target only
- P^{π}_{μ} specific

Measured Results

	Units of $\times 10^{-4}$			
	Ave. Diff.	Stat.	Sys	
ρ	95.1	±1.2	± 2.3	
δ	51.3	± 2.1	± 2.7	
ξ	80.3	± 2.9	$^{+16.5}_{-6.3}$	

Positron Interactions in Detector

"Hard" momentum loss determined from broken tracks

Sensitivity to Calibration Effects

- Leading Contribution: Momentum Dependence
- All data calibrated with momentum dependent and independent methods
- Half of average difference used

< 6 b

Systematics

Energy Calibration

Fringe Field Depolarization

R. Bayes (University of Glasgow)

NUFACT 2011 22 / 35

Asymmetric Polarization Uncertainty

R. Bayes (University of Glasgow)

NUFACT 2011 23 / 35

Decay Parameters

R. Bayes (University of Glasgow)

NUFACT 2011 24 / 35

Consistency of Results

• There is a strong internal consistency of the results.

	$\chi^{\rm 2}/\mathit{ndf}$
ρ	16.5/13
δ	14.8/13
ξ	8.7/8

Measured Values

$$\begin{split} \rho &= 0.74997 \pm 0.00012 \pm 0.00023 \\ \delta &= 0.75049 \pm 0.00021 \pm 0.00027 \\ \mathcal{P}_{\mu}^{\pi} \xi &= 1.00084 \pm 0.00029^{+0.00165}_{-0.00063} \end{split}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Revision Due to $P^{\pi}_{\mu} \xi \delta / \rho$

Endpoint Anisotropy

 ${\it P}^{\pi}_{\mu}\xi\delta/
ho=$ 1.00179 $^{+0.00156}_{-0.00063}$ > 0.99909 (90% C.L.)

• $P^{\pi}_{\mu}\xi\delta/
ho>$ 1 by 2.9 σ

- $P^{\pi}_{\mu}\xi\delta/\rho$ changed in Ag and Al targets by 3.9 σ
- Prompted review of systematics after black box opening

Changes in the Revised analysis

- Motivated categorization of systematics
- Corrected parameter weighting
- Identified systematics from mean stopping position

Change between blind and revised results

	Units of $\times 10^4$	
	Value	$\sigma_{\textit{total}}$
ρ	-1.4	-0.3
δ	-2.3	+0.1
$P_{\mu}\xi$	0	-0.2

< 17 ▶

Global Analysis

e^+ spectrum measurements are a subset of muon decay parameters

Parameter	Value	Reference	
Current TWIS	ST decay parameters		•
ρ	0.74997 ± 0.00028		•
δ	0.75049 ± 0.00033		
ξ	$1.00084^{+16.9}_{-11.9}$		
Previous dec	ay parameters		
ρ	0.7518 ± 0.0026	PDG average (2003)	
δ	0.7486 ± 0.0038	Balke,1988	
$P_{\mu}\xi$	1.0027 ± 0.0085	Beltrami,1987	Inte
$P_{\mu}\xi\delta/\rho$	0.99787 ± 0.00082	Jodidio,1986	1110
Parameters f	rom positron Polarizatio	n	
ξ'	1.00 ± 0.04	PDG average (2003)	
$\xi^{\prime\prime}$	0.65 ± 0.36	Burkard, 1985	
$\bar{\eta}$	0.02 ± 0.08	PDG average (2003)	
α/A	0.015 ± 0.052	Burkard, 1985	0
β/A	0.002 ± 0.018	Burkard, 1985	Qr
η	0.071 ± 0.037	Danneberg,2005	\cap
$\eta^{\prime\prime}$	0.105 ± 0.052	Danneberg,2005	\Box_L
α'/A	-0.047 ± 0.052	Burkard, 1985	0,
	-0.0034 ± 0.0219	Danneberg,2005	Q
β'/B	0.017 ± 0.018	Burkard, 1985	Q
	-0.0005 ± 0.00080	Danneberg,2005	$\mathbf{\alpha}_{L}$

 Required for limits on interaction probabilities and coupling constants

- 1. - 1. 1199

Interaction Probabilities			
	2008	2011	
	(×10 ⁻³)	(×10 ⁻³)	
Q_{RR}	< 0.96	< 0.24	
Q_{LR}	< 1.38	< 0.42	
Q_{RL}	< 42	< 42	
Q_{LL}	> 955	> 955	

Coupling Constants

	2004	2008	2010
$ g_{RR}^{S} $	0.166	0.062	0.031
$ g_{RR}^{V} $	0.033	0.031	0.015
$ g_{LR}^{S} $	0.125	0.074	0.041
$ g_{LR}^V $	0.060	0.025	0.018
$ g_{LR}^T $	0.036	0.021	0.012
$ g_{RL}^{S} $	0.424	0.412	0.412
$ g_{RL}^{V} $	0.110	0.104	0.103
$ g_{RL}^{T} $	0.122	0.104	0.103
$ g_{LL}^{S} $	0.550	0.550	0.550

Left - Right Symmetric Models

$$W_L = \cos \zeta W_1 + \sin \zeta W_2 \qquad W_R = e^{i\omega} (-\sin \zeta W_1 + \cos \zeta W_2)$$

- $W_{R(L)}$ mediate V + A(V A) currents⁴
- ζ is the mixing angle between W_1 and W_2
- ω CP violating phase

Decay Parameters in This Model

$$\rho \simeq \frac{3}{4} \left(1 - 2 \left(\frac{g_R}{g_L} \right)^2 \zeta^2 \right), \delta \equiv \frac{3}{4}, \ \xi \simeq 1 - 2 \left(\left(\frac{g_R m_1}{g_L m_2} \right)^4 + \left(\frac{g_R}{g_L} \right)^2 \zeta^2 \right)$$

$$1 - \frac{P_{\mu}^{\pi}\xi\delta}{\rho} \simeq 2\frac{g_R^4 m_1^4}{g_L^4 m_2^4} \left(1 + \frac{\cos^2\theta_1^R}{\cos^2\theta_1^L}\right) + 2\frac{g_R^2}{g_L^2}\zeta^2 + 4\frac{g_R^3 m_1^2\cos\theta_1^R}{g_L^3 m_2^2\cos\theta_1^L}\zeta\cos(\alpha + \omega)$$

⁴P. Herczeg, **PRD** 34,3449,(1986)

Left-Right Symmetric Models

90% Confidence limits

- $|\frac{g_R}{g_L}\zeta| < 0.02$
- $|\frac{g_R}{g_L}|m_2 > 578 \text{ GeV/c}$
- Set using a combination of 90% limits on ρ, and P_μξδ/ρ

Generalized approach to model

- No assumption of model parameters
- W₂ Direct searches assume g_R = g_L,ω = 0

 Order of magnitude improvement in precision of decay parameters has been completed by the TWIST experiment

$$\begin{array}{ll} \rho &= 0.74997 \pm 0.00012 \pm 0.00023 \\ \delta &= 0.75049 \pm 0.00021 \pm 0.00027 \\ P_{\mu}\xi &= 1.00084 \pm 0.00029 \substack{+0.00165 \\ -0.00063 \end{array} \\ P_{\mu}\xi \delta / \rho &= 1.00179 \substack{+0.00156 \\ -0.00071 } \\ > 0.99909 \ (90\% \ \text{C.L.}) \end{array}$$

- No deviation from the standard model has been detected
- $P_{\mu}\xi\delta/\rho > 1$ has been investigated; no problem with analysis has been identified

Thank you

TRIUMF Ryan Bayes ** Yuri Davydov Wayne Faszer Makoto Fujiwara **David Gill** Alexander Grossheim Peter Gumplinger Anthony Hillairet *† Robert Henderson **Jingliang Hu** John A. Macdonald § Glen Marshall **Dick Mischke** Mina Nozar Konstantin Olchanski Art Olin † **Robert Openshaw** Jean-Michel Poutissou Renée Poutissou Grant Sheffer Bill Shin ^{‡‡}

U. Alberta Andrei Gaponenko ** Robert MacDonald ** Maher Quraan Nate Rodning §

U. British Columbia James Bueno * Mike Hasinoff Blair Jamieson **

U. Montréal Pierre Depommier

U. Regina Ted Mathie Roman Tacik Kurchatov Institute Vladimir Selivanov

Texas A&M U. Carl Gagliardi Jim Musser ** Bob Tribble

Valparaiso U. Don Koetke Shirvel Stanislaus

Recently graduated
 Graduated
 also U. Vic
 also U. Saskatchewan
 deceased

A DE RIA SER A SER A

Cuts Imposed on the Analysis

- 17 cuts and selections imposed on events
- Based on geometric and physical constraints of detector system.
- leave just over 10% of events

• Example: Kinematic cuts

NUFACT 2011

33/35

simulation

Chamber Response

Vast improvement made using data corrected STRs

- Base space time relationships generated using GARFIELD simulation
- Chamber STRs corrected to minimize e⁺ track fit time residuals
- Corrects for plane to plane construction differences
- Procedure completed for data and Monte Carlo

< 17 ▶

Systematic Effect From Chamber Response

Exaggerated - Standard STR

- Exaggerated time residuals between data and MC
- Constructed STRs with the difference multiplied by a factor of 10.

$$egin{array}{c|c} \Delta
ho & -0.31 \pm 0.17 \ \Delta \delta & -1.03 \pm 0.29 \ \Delta \xi & 0.88 \pm 0.36 \end{array}$$

< 17 ▶

NUFACT 2011 35 / 35

TWIST Measurement