The NA61/SHINE long target pilot analysis for **TZK**

N.Abgrall

- T2K neutrino flux in terms of hadron production
- the NA61/SHINE setup
- the 2007 LT measurements
 - feasibility
 - particle identification
 - analysis binning
- LT based π^+ re-weighting factors for the T2K hadronization model
- NA61 vs T2K beam+target configurations
- next steps
- conclusions

NuFact 2011, Geneva

UNIVERSITÉ

DE GENÈVE

Neutrino flux in T2K & hadron production measurements

~95% of the v_{μ} flux at SK comes from π^+ decay. Need to look at different sources to understand which fraction could be constrained by auxiliary hadron production measurements. ~50% of the v_e flux from μ^+ decay produced in the same π^+ decays ---> v_e flux partly constrained by the same data !

The NA61/SHINE setup in PID capabilities

Short description of the NA61 setup (for more details see talk & poster by M. Posiadala, S. di Luise). Particle identification in NA61 is based on both **energy loss** and **time-of-flight** measurements.

Feasibility of the measurements is based on: 1. achievable resolution of track parameters

2. maximal coverage in (p, θ)

3. backward extrapolation to the surface of the target

- 4. knowledge the beam & target relative alignment
- 5. normalization to protons on target

Feasibility of the measurements is based on:

- 1. achievable resolution of track parameters
- 2. maximal coverage in (p, θ)

3. knowledge of the beam & target relative alignment

- 4. backward extrapolation to the surface of the target
- 5. normalization to protons on target

The **analysis binning in {p,θ,z}** is based on:

- coverage after track quality cuts that maximize the resolution of the track parameters on target
- appropriate bin size in regions where the dE/dx varies strongly with momentum
- uniform acceptance

Particle identification based on the combined ToF & dE/dx method developed for the thin target data.

NuFact 2011, Geneva

Comparison of raw π^+ yields extracted from the NA61 data and from the T2K hadronization model

 nowever, syst. uncertainty from particle identification is attributed to both da and MC yields, in principle < sum over all other corrections
 e.g. 2007 LT data: ~6% syst. (with very poor statistics data set !)

Reconstructed π^+ yields in NA61 & T2K model

Comparison of raw π^+ yields extracted from the NA61 data and from the T2K hadronization model

Re-weighting factors for the LT π^+ production simulated by FLUKA are calculated from the extracted yields after reconstruction. The time-of-flight efficiency is the only non-MC based correction that needs to be applied to data.

$$\begin{aligned} \text{Re-weighting factors for } \pi^{\star} \text{ are defined as:} \qquad w(p,\theta,z) &= \frac{n_{\pi}^{NA61}}{n_{\pi}^{FLUKA}}(p,\theta,z) \times \begin{cases} \frac{C_{ACC}^{FLUKA}}{C_{ACC}}(p',\theta',z') \times \frac{C_{LOSS}^{FLUKA}}{C_{LOSS}}(p',\theta',z') \\ \frac{N_{\pi}^{NA61}}{V_{LOSS}}(p,\theta,z) \times \frac{N_{\pi}^{NA61}}{N_{\pi}^{FLUKA}}(p,\theta,z) \times \frac{N_{POT}^{FLUKA}}{N_{POT}^{NA61}} \\ \times \frac{\frac{C_{FDW}^{FLUKA}}{C_{FDW}^{NA61}}(p,\theta,z) \times \frac{C_{LOSS}^{FLUKA}}{C_{LOSS}^{NA61}}(p,\theta,z) \\ \times \frac{\frac{C_{FDW}^{FLUKA}}{C_{FDW}^{FLUKA}}(p,\theta,z) \times \frac{C_{LOSS}^{FLUKA}}{C_{LOSS}^{FLUKA}}(p,\theta,z) \times \frac{C_{LOSS}^{FUKA}}{C_{LOSS}^{FLUKA}}(p,\theta,z) \\ \times \frac{C_{FDW}^{FLUKA}}{C_{FDW}^{FLUKA}}(p,\theta,z) \times \frac{C_{LOSS}^{FUKA}}{C_{LOSS}^{FLUKA}}(p,\theta,z) \\ \times \frac{C_{FDW}^{FLUKA}}{C_{FDW}^{FLUKA}}(p,\theta,z) \times \frac{C_{LOSS}^{FUKA}}{C_{LOSS}^{FUKA}}(p,\theta,z) \\ \times \frac{C_{FDW}^{FLUKA}}{C_{FDW}^{FLUKA}}(p,\theta,z) \times \frac{C_{LOSS}^{FUKA}}{C_{LOSS}^{FUKA}}(p,\theta,z) \\ \times \frac{C_{FDW}^{FUKA}}{C_{FDW}^{FUKA}}(p,\theta,z) \times \frac{C_{FUKA}^{FUKA}}{C_{FDW}^{FUKA}}(p,\theta,z) \\ \times \frac{C_{FDW}^{FUKA}}{C_{FDW}^{FUKA}}(p,\theta,z) \times \frac{C_{FUKA}^{FUKA}}{C_{FDW}^{FUKA}}(p,\theta,z) \\ \times \frac{C_{FDW}^{FUKA}}{C_{FDW}^{FUKA}}(p,\theta,z) \times \frac{C_{FUKA}^{FUKA}}{C_{FDW}^{FUKA}}(p,\theta,z) \\ \times \frac{C_{FUKA}^{FUKA}}{C_{FDW}^{FUKA}}(p,\theta,z) \times \frac{C_{FUKA}^{FUKA}}{C_{FDF}^{FUKA}}(p,\theta,z) \\ \times \frac{C_{FDW}^{FUKA}}{C_{FDW}^{FUKA}}(p,\theta,z) \\ \times \frac{C_{FUKA}^{FUKA}}{C_{FDW}^{FUKA}}(p,\theta,z) \\ \times \frac{C_{FUKA}^{FUKA}}{C_{FUKA}^{FUKA}}(p,\theta,z) \\ \times \frac{C_{FUKA}^{FUKA}}{C_{FUKA}^{FUKA}}(p,\theta,z) \\ \times \frac{C_{FUKA}^{FUKA}}{C_{FUKA}^{FUKA}}(p,\theta,z) \\ \times \frac{C_{FUKA}^{FUKA}}{C_{FUKA}^{FUKA}}(p,\theta,z) \\ \times$$

Systematic uncertainties attributed to:

Systematic error	dependence	estimation	value	Main contribution at high			
Particle identification	p	MC	1-5%	momentum			
Normalization	global	Data	1.4%	Will be reduced with more stat.			
ToF efficiency	(p, θ)	Data	< 3% –	and new calibration for LT runs			
Beam momentum	global	\mathbf{MC}	$< 3\%$ \leftarrow	\nearrow Upper bounds. Need to run			
Target density	$_{\rm global}$	\mathbf{MC}	< 3%	simulations with more stat.			
Target alignment	global	\mathbf{MC}	3% ←	 Second largest contribution, 			
				will be reduced in 2009/10			
The overall uncertainty is typically: ±10% (stat.) ±6% (syst.)							
dominates 2007 results reduce < 5% for 2009/2010 data							
NuFact 2011, Geneva				10			

NA61 vs T2K configurations

Develop procedure to implement the re-weighting factors for the LT π^+ production simulated by FLUKA within the T2K beam simulation (JNUBEAM).

simple 90 cm long Carbon rod simulated in **FLUKA** for input to JNUBEAM (Carbon budget fairly similar to that of the more complicated real geometry)

re-interactions of outgoing particles in the surrounding structures handled by GCALOR hadron production in surrounding basis and flanges is completely negligible.

NA61-based re-weighting factors can be applied to the simplified target simulation in JNUBEAM.

NA61 vs T2K configurations

Our FLUKA standalone simulation is used to understand systematics related to differences between the T2K beam+target configuration and the NA61 measurements

Systematic error	dependence	estimation	value	Compare π + yields in {p, θ ,z} bins
Particle identification	p	MC	1-5%	for simulation w/ and w/o studies
Normalization	global	Data	1.4%	effect.
ToF efficiency	(p, θ)	Data	< 3%	If variations < 5% (required
Beam momentum	global	\mathbf{MC}	< 3%	precision on the NA61
Target density	global	\mathbf{MC}	< 3%	measurements), consider global
Target alignment	global	\mathbf{MC}	3%	systematic uncertainty.

Studies include effects of:

- different target geometry, i.e. simple rod in the T2K beam simulation vs replica target in NA61
- different alignment wrt beam axis, i.e. aligned target in T2K, tilted target in NA61
- different target density, i.e. 1.804 g/cm³ for T2K target, 1.831 g/cm³ for NA61 replica target
- beam momentum uncertaint (consider difference between set and measured values in NA61 as maximal possible deviation)

e.g. alignment study, longitudinal bin 3

Next steps

Develop procedure to implement the re-weighting factors for the LT π^+ production simulated by FLUKA within the T2K beam simulation (JNUBEAM).

Conclusions

- First preliminary results of the NA61 long target 2007 pilot analysis
 - π reconstructed at the surface of the T2K replica target
 - T2K model corrected within the sim+rec environment of NA61 which allows to compare MC and data without further corrections ---> reduces systematics !
 - * uncertainty of current results dominated by statistics !
- Further improvements expected for 2009/2010 data sets:
 - ***** much more statistics --> account for beam profile (radial re-weighting)

--> extract kaon production, protons

- better control of target alignment
- dedicated ToF calibration
- First trial to constrain neutrino flux from long target data !
 - ***** re-weight the π + production at the level of both prim+sec interactions in the target
 - ***** might develop more fancy treatment combining both LT+thin target re-weighting

Reconstructed π^+ yields in NA61 & T2K model

Comparison of raw π^+ yields extracted from the NA61 data and from the T2K hadronization model

Reconstructed π^+ yields in NA61 & T2K model

Comparison of raw π^+ yields extracted from the NA61 data and from the T2K hadronization model

