Performance Comparison Between FSIIA and Bucked Coils for the Neutrino Factory Cooling Lattice

A. Alekou*, Imperial College London, London, U.K.
J. Pasternak, Imperial College London, London/RAL-STFC
C. Rogers, RAL ASTeC

#androula.alekou08@ic.ac.uk

3/8/2011
Layout

• Introduction
• Current Baseline Cooling Lattice: FSIIA
• New Alternative Lattice: Bucked Coils, BC
• FSIIA vs BC:
 • Magnetic Field
 • Cooling Dynamics & Transmission
• Towards Engineering Design
• Summary & Future Plans
Neutrino Factory:

- Proposed next generation neutrino physics facility and possibly a front-end of the Muon Collider
- Will **produce** the most intense and high-energy neutrino beam ever achieved, from stored muon decays:
 \[\mu^- \rightarrow e^- + \nu_e + \bar{\nu}_\mu \quad \mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu \]
- Key to: discover leptonic CP violation, mass hierarchy, precise determination of mixing parameters
Muon beam produced at Neutrino Factory has large initial emittance which needs to be reduced (cooled)

Muons life-time very short (~2.2 μs)

Ionization Cooling:

- Muon momentum decreases in every direction by ionising absorber’s material
- Momentum is restored only longitudinally when beam passes through RF cavities

Only viable technique for muon emittance reduction: Ionization Cooling

Transverse phase-space reduced
Current Baseline Cooling Channel: FSIIA

FSIIA: Feasibility Study IIA

- Coil-LiH absorber-RF-LiH absorber
- Coil’s polarity alternates with every repeat
- Good transmission & emittance reduction
Current Baseline Cooling Channel: FSIIA

FSIIA: Feasibility Study IIA

- **Coil-LiH absorber-RF-LiH absorber**
- **Coil’s polarity alternates with every repeat**
- **Good transmission & emittance reduction**

BUT

- **Recent studies indicate RF performance may be limited when external magnetic field is applied**
- **FSIIA has large magnetic field at RF position (>4 T)**

Feasibility of FSIIA is questioned!

We are searching for a new solution mitigating the RF breakdown by lowering the magnetic field at the RF cavities while also keeping good transmission and cooling performance

“Effects of high solenoidal magnetic fields on rf accelerating cavities”, A. Moretti, et. al, Physical Review Special Topics - Accelerators and Beams 8, 072001
New Alternative Lattice: Bucked Coils, BC

- The magnetic field at the RF cavities can be decreased by:
 - Increasing cell’s length
 - Using **Bucked Coils**:
 - Pair of different radius & opposite polarity coils
 - The pair of coils is placed at the same position along the beam axis (homocentric coils)
New Alternative Lattice: Bucked Coils, BC

- The magnetic field at the RF cavities can be decreased by:
 - Increasing cell’s length
 - Using **Bucked Coils**:
 - Pair of different radius & opposite polarity coils
 - The pair of coils is placed at the same position along the beam axis (homocentric coils)
- BC configuration:
 - Pair Of Coils - LiH absorber - RF - LiH absorber
 - Pair Of Coils’ polarity interchanges with every repeat
New Alternative Lattice: Bucked Coils, BC

- Three different versions: BC-I, -II, -III
- BC-I, -II, -III: same configurations except for:
 - Full-cell’s length
 - Current densities of inner-outer coils

<table>
<thead>
<tr>
<th>Lattice</th>
<th>BC-I</th>
<th>BC-II</th>
<th>BC-III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-cell Length (m)</td>
<td>2.10</td>
<td>1.80</td>
<td>1.80</td>
</tr>
<tr>
<td>Inner Coil Current Density (A/mm²)</td>
<td>90.24</td>
<td>128.10</td>
<td>99.26</td>
</tr>
<tr>
<td>Outer Coil Current Density (A/mm²)</td>
<td>120.00</td>
<td>112.80</td>
<td>132.00</td>
</tr>
</tbody>
</table>
FSIIA vs BC: Magnetic Field

Area with ZERO magnetic field

Centre of Coil
Centre of RF
FSIIA vs BC: Magnetic Field

- **FSIIA**: >4 T !!!
- **BC-I**: 4 times lower than FSIIA
- **BC-II** and **BC-III**: 2 times lower than FSIIA
Betatron Function

\[\beta_\perp \]

- FS2A
- BCI
- BCI
- BCIII

\[z \text{ (mm)} \]

\[\beta_\perp \text{ (mm)} \]

Androula Alekou, Imperial College London,
androula.alekouo8@ic.ac.uk, NuFact11

3/8/2011
Beam initial characteristics

Lattices were compared using the same initial beam:

- Simulated using G4MICE software
- 1,000 muons
- 10 mm Transverse Emittance
- 0.07 ns Longitudinal Emittance
- P: Gaussian distribution centred at 232 MeV/c
Better cooling for FSIIA and BC-III
FSIIA vs BC: Transmission in $A_T < 30$ mm

- BC-III: best transmission over all at 120 m
- FSIIA maximum at 70 m
- BC-I: less than 4% lower transmission than FSIIA at 70 m (BC-II and BC-III less than 3%)
Towards Engineering Design

- We started looking into the Hoops Stress of Bucked Coils → Larger than FSIIA but within technological limits!
- Superconducting design: BC’s look feasible with Nb-Ti
- Still more studies needed including realistic beam losses that could deposit energy into the coils
Summary

• FSIIA:
 • Current Neutrino Factory baseline cooling channel
 • Good transmission and transverse emittance reduction
 • Large magnetic field at RF position
 • Recent studies indicate RF performance can be limited when external magnetic field applied \(\Rightarrow \text{Is FSIIA feasible?} \)

• Bucked Coils (BC):
 • New lattices (BC-I, -II, -III), designed to reduce B at RF position
 • BC-I:
 • 4 times lower magnetic field than FSIIA at RF position
 • Less than 4% smaller transmission within 30 mm \(A_T \) than FSIIA

Future Plans

• BC optimisation: lower B & much better transmission than FSIIA
• Paper preparation
Thank you
Current Density vs B_{max} in Cooling Lattices

![Graph showing current density vs magnetic field strength for cooling lattices with different labels: FSIIA, BC-I, BC-II, BC-III.](image-url)
Buckup

Androula Alekou, Imperial College London, androula.alekou08@ic.ac.uk, NuFact11

β⊥(mm)

β⊥

- FS2A
- BCI
- BCII
- BCIII

z (mm)

0 1000 2000 3000 4000 5000

750 800 850 900 950 1000 1050
Neutrino Factory Front End:
1. Protons on target \rightarrow Pions production
2. Drift: Pions decay to muons and bunch lengthens (high energy “head”, low energy “tail”)
3. Buncher: RF voltages applied to beam \rightarrow string of different-energy bunches
4. Rotator: Lower energy reference particle moved to accelerating phase