Measurement of π-N interaction PIAvO-Harpsichord

Motoyasu Ikeda

for

PIAvO-Harpsichord Duet collaboration

Contents

- Motivation
- Overview
- Detectors
- Data analysis
- Future plan

PIAnO-Harpsichord member:

Japan: Kyoto, ICRR, Tokyo

Canada: TRIUMF, UBC, Regina, Toronto, Alberta

In total about 20 people.

Importance of Pion interaction

- For neutrino beam with E<1GeV (like T2K), pion production probability through delta resonance is relatively high.
- Understanding of interactions of those secondary pions with nuclei is key to reduce systematics.

If pion is absorbed, $CC1\pi$ looks like CCQE We need to know how often this can happen

What we measure

Data from past experiments have 20-30% uncertainty for absorption cross section.

Our goal:

Measure Cross section

- π absorption
- π charge exchange (CX) using scintillator tracker detectors with 10% sys. uncertainty.

initial momentum (MeV/c)

Impact to T2K

Our results:

>Will improve v.int. calculation uncertainty

(Final state interaction).

– Now, the contribution to T2K v_e event expectation error is 10% .

We plan to improve this to 5%.

>Will improve understanding of π propagation in detector material.

→ Improve both Near and Far detector sys for T2K experiment.

T2K Sys . for number of expected v_e events at SK

Error Source	For sin ² 2θ ₁₃ =0
Beam flux	±8.5%
Final State Int.	±10.1%
v int. X sec. (except FSI)	±9.7%
Near Det	+5.6% -5.2%
Far det.	±14.7%
Near Det. stat.	±2.7%
Total	+22.8% -22.7%

Overview of experiment

- TRIUMF@Vancouver:
 M11 beam-line
- Secondary π beam
 - includes e, μ and p
- π Momentum:
 - 150MeV/c~375MeV/c(in step of 25MeV/c)
- Trigger rate
 - 30Hz
- Data taking in last year
 - 2010/10 ~2010/12
- Target material
 - Scintillator(-CH2CH(C6H5)-)

M11 Experimental area before the experiment

Detector Platform

Interaction of Pions

- 1. Detect secondary particles to separate absorption/cx from scatt.
 - → Full active "super" fine grained scintillator tracker
- 2. With only scintillator tracker, absorption and charge exchange can not be separated.
 - → We put gamma detectors around the tracker

Detectors Side view Veto for Nal **PIAnO** Harpsichord Nal detectors to detect $\pi 0 \gamma$. Tagging of CX. Trigger Scintillation bar fiber + WLS Tracker Scintillation bar size $1 \text{cm} \times 1 \text{cm} \times 30 \text{cm}$ Cherenkov detector for Beam PID 30cm Nal (π-μ separation) Target+Detector 1.4m Super Fine grained detector

Data taking with 2 configurations

First, measure angular distribution of π^0 decay γ s

γs are mostly emitted to forward and backward direction in calculation.

Then, check the distribution with different configuration. We can get more statistics, with larger solid angle

PIAnO detector

Consist of 1024 Scintillation fibers

- 1.5 mm square fiber.
- 32 fibers for one layer.
- 32 layers in total.
- →5cm × 5cm × 5cm Detector volume MAPMT and Read out elec. are from SciBooNE/SciBar.

Scintillation fibers are coated by reflector and aluminized.

64channel
Multi Anode PMT (MAPMT)
15 MAPMTs in total

Detector volume 5cm × 5cm × 5cm

HARPSICHORD

Consists of 1cm square scintillator with WLS fiber coupled to Multi Pixel Photon Counter (MPPC). 15layers of $32(x) \times 32(y)$ channels.

Removable lead plates (1.5mm) are installed between each layers during configuration B to get more sensitivity to $\pi 0$ gamma.

Nal Detectors

Beam particle identification

We use 2 detectors to identify beam particle.

Pion momentum

150 MeV/c : Pion fraction: ~50%

TOF (~12m)

works < ~200 MeV/c

Cherenkov + TOF

200-300MeV/c

Pion momentum

300 MeV/c : Pion fraction: $> ^95\%$

Analysis Using PIAnO

Example of Event display (Absorption or CX like?)

Blue: Hit less than 25P.E. (π)

Red: Hit >= 25P.E. (Proton like)

Z [mm]

Reconstruction of Tracks

Event selection

After find a vertex for a event.

Flow of selection for absorption/cx like events

Good incident track (250MeV/c run)

• To select good incident track,

direction, incident position, and beam PID are used

Fiducial Volume cut

Fiducial volume cut: X,Y positions within Fiducial volume

Z position
3layer from outside
4 < Z layer < 29

Interaction rate

After

- Good incident track
- Fiducial volume cut

Total interaction rate

is obtained.

Interaction rate is:

of event in fiducial volume

of event with Good incident track

Time-line and schedule

Summary

- Interaction of pion is important to reduce systematic uncertainty for T2K.
- Pion interaction measurement project started.
 - First target: Absorption and charge exchange cross section
- We developed 2 scintillator trackers
 - PIAnO and Harpsichord
- First data taking is done in 2010.
 - Run1 data analysis is on going
- This result will be summarized soon and used to update T2K analysis in 2012.

Beam particles fraction

Data taking

1momentum ~1 day In total, we took ~1month of data including calibration.

During data taking

Beam profile

Trigger rate

HV values

Temperature

Humidity

Actual Magnet strength

Are monitored

Scattering absorption separation

MC Number of track distribution $250MeV/c \pi+$

3D matching of Tracks

- True trajectory
- Recon track (2D)
- Recon track (3D matched)

(Same color : Same 3D track)

Tracks not escaped from side:
Z of both start and end points should match in X and Y view
Tracks escaped from side:
Only Z of start point should match

Z [mm]

Principle of Cherenkov detector

