The Status of the T2K Near Detectors

Neil McCauley
for the T2K Collaboration
The T2K Collaboration

<table>
<thead>
<tr>
<th>Country</th>
<th>Institutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>CEA Saclay, IPN Lyon, LLR E. Poly., LPNHE Paris</td>
</tr>
<tr>
<td>Germany</td>
<td>U. Aachen</td>
</tr>
<tr>
<td>Japan</td>
<td>ICRR Kamioka, ICRR RCCN, KEK, Kyoto U., U. Kobe, U. Miyagi, U. Osaka City, U. Tokyo</td>
</tr>
<tr>
<td>S. Korea</td>
<td>N. U. Chonnam, U. Dongshin, N. U. Seoul</td>
</tr>
<tr>
<td>Spain</td>
<td>IFIC, Valencia, U. A. Barcelona</td>
</tr>
<tr>
<td>Switzerland</td>
<td>ETH Zurich, IFIC, Valencia, U. A. Barcelona</td>
</tr>
<tr>
<td>USA</td>
<td>Boston U., B.N.L., Colorado S. U., Duke U., Louisiana S. U., Stony Brook U.</td>
</tr>
<tr>
<td>Russia</td>
<td>U. Rochester, U. Washington</td>
</tr>
</tbody>
</table>
The T2K Experiment

- Long baseline neutrino experiment
 - Baseline 295km
 - First off axis neutrino experiment
- Search for/measure neutrino oscillations:
 - $\nu_\mu \rightarrow \nu_e$
 - $\nu_\mu \rightarrow \nu_\tau$
- Improve measurement of θ_{23}, Δm^2_{23}
 - Is θ_{23} maximal?
- First measurement of θ_{13}
 - How small is θ_{13}?
The Near Detector Complex

- **INGRID**
 - On Axis Detector
 - Beam Monitoring
 - Rate
 - Direction
 - Stability
- **ND280**
 - Off Axis Detector
 - Neutrino Flux and Spectra
 - Inputs into oscillation analyses
 - Neutrino Cross Section
Technologies in ND280

- **Scintillator Detectors**
 - Plastic scintillator bars
 - Wavelength shifting fibres
 - Kuraray Y11, 1 mm diameter
 - MPPCs
 - Multi-Pixel Photon Counters
 - 1.3x1.3mm
 - 667 pixels
 - First large scale deployment of MPPCs.
 - Readout via 2 electronics types
 - TRIPT (Ingrid, P0D, ECAL, SMRD)
 - AFTER (FGD)

- **TPC**
 - Readout via micromegas
 - 72 modules 34.2x35.9 cm²
 - Pads: 7x9.8 mm²
On Axis : INGRID

- Iron - Scintillator Detector
 - 16 Modules across the beam profile
- Monitor the beam intensity and direction
 - Use the interaction of the forward muon neutrinos.
Analysis at Ingrid

- Select Events via:
 - Reconstructed Tracks.
 - Beam Timing
 - Fiducial Volume
 - Avoid entering events (sand muons)

Reconstructed Track Angles

Angular Resolution

Selection Efficiency
Beam Direction

• A change in the beam direction of 1 mrad corresponds to a variation of E_{peak} at SK of $\pm 2\%$

• The beam profile and steering are measured across INGRID.

• Horizontal
 • $-0.014 \pm 0.025(\text{stat}) \pm 0.33(\text{sys})$ mrad

• Vertical
 • $-0.107 \pm 0.025(\text{stat}) \pm 0.37(\text{sys})$ mrad
Beam Stability

Beam Power Check:

Rate: Data/MC = 1.057 ±0.001(stat)±0.040(sys)
The ND280 Off-Axis Detector

Understanding the beam
- ν_μ Flux and Spectrum
- ν_e Beam Contamination
- Neutrino Cross-Sections
Off-Axis Detector Design

- Refurbished UA1 Magnet 0.2T field
- Fine Grained Detectors (FGDs)
 - Neutrino target region for the tracker.
- TPCs
 - Particle Tracking
 - ν_μ, ν_e measurements
- P0D
 - Measure NC π^0 rate
- ECAL
 - Surrounds tracker and P0D.
 - Capture and measure EM energy
 - Only the DS ECAL in Run 1
- SMRD
 - Muon ranging instrumentation in the magnet yoke
Key Features of the Off-Axis detector

- **Tracker Region**
 - High precision tracking with a magnetic field.
 - Provides excellent momentum resolution for charged particles.
 - Excellent particle identification
 - dE/dx in the TPC
 - Further particle ID in the ECAL and FGD
 - ECAL surrounding the tracker
 - Capture all the energy leaving the vertex.

- **P0D**
 - Specialised for the measurement of NC π^0s, a key T2K background.
 - Water and Carbon targets for determination of cross sections on multiple materials.
 - Key point for T2K as SK target is water.
The FGDs

- Fine-Grained detectors
 - Alternating x-y planes of scintillator bars.
 - 9.6x9.6x1844 mm
 - 8448 channels
 - 0.24% bad channels
- Acts as the neutrino target for the tracker.
 - Good vertexing
 - Identification of short primary tracks.
- FGD1
 - Upstream
 - Scintillator Only
- FGD2
 - Downstream
 - Includes water target
- Extract rate on water by comparing both FGDs.
FGD Vertices

The FGD contains the primary vertex for tracker events.
FGD Particle Identification

- PID in the FGD is crucial for identification of short tracks from the vertex.
- Use DE/DX information for PID.
 - Separate protons and muons.
 - Examine tracks that stop in the FGD
- Michel Electrons

\[
\chi^2 / \text{ndf} = 86.97 / 72
\]

\[
p_0 = -0.7034 \pm 1.8208
\]

\[
p_1 = 319.9 \pm 9.0
\]

\[
p_2 = 2.23 \pm 0.09
\]
The TPC

- 3 TPCs interleaved with the 2 FGDs
- Readout via micromegas
 - 1726 pads per module
 - 124416 readout channels
 - 0.13% bad channels
- Provide detailed tracking information
 - 700 μm point resolution at full drift distance.
 - Momentum resolution 7% at 1GeV

Cathode ~ 25 kV

Micromesh ~ ~350V

Pad pitch 7.0mmx9.8mm

~1 electron/ion pair per 0.3 mm

Drift ~1m

128 μm
dE/dx in the TPC

- dE/dx information in the TPC provides a very powerful PID tool.
- Can separate muons/pions from electrons and protons with high precision.
 - Crucial for ν_e analysis due to high muon rate from beam composition.
The ECAL

- Surrounds the tracker (FGD/TPC) and the P0D
 - Collects particles leaving those regions.
- Lead scintillator sandwich
 - 1x4 cm bar cross section
- Readout via wavelength shifting fibres and MPPCs.
- 22326 Channels on 336 TFBs in 13 modules
 - 35 (0.16%) bad channels.
- Downstream ECAL installed in 2009
 - Present in all data
 - Calibrated in testbeam at CERN
- Barrel ECAL and P0D ECAL installed in summer 2010.
 - Present only in run 2 data.
ECAL Energy

- Determine photon and electron energy.
 - Needed to reconstruct all the energy leaving the neutrino interaction.
- Detector response calibrated via muons.
 - Normalise to minimum ionising particle at normal incidence.
 - Correcting for attenuation in the fibre.
- EM Energy proportional to total charge collected.
 \[
 \frac{\sigma_E}{E} = 9.8\% \quad \frac{\sqrt{E}}{E} (\text{GeV})
 \]
Particle Identification in the ECAL

- Provides an independent PID to DE/DX in the TPC.
 - Improved purity
 - Further reduction to muon backgrounds.
 - Cross checks.
- Use a neural net based on the shape and charge distribution of a cluster.
- Verified with:
 - Testbeam data
 - Cosmic events
 - Beam induced muons

![Graphs showing particle identification results](image-url)
The P0D

- Optimised to detect neutral current π^0s.
 - 33.5(B)x17.25(H) mm triangular bars
 - Lead and brass radiators
 - 10400 channels
 - 0.07% bad channels
- Water target designed for operation with water in/water out.
 - Determine rate on ^{16}O
 - Water in: all run 1 and 6.98×10^{19} pot in run 2
 - Water out: 3.03×10^{19} pot in run 2.
Events in the P0D

- Event Yield
- Event Timing
- Vertex Distribution

Integral of 3D Vertices vs Protons@CT5

Time Distribution of Vertices

Beam Centre
The SMRD

- Scintillator panels instrumenting the magnet
 - Measure the muon from neutrino interactions
 - Provide cosmic trigger
- Panels are:
 - 870x167x7 mm horizontal
 - 870x175x7 mm vertical
 - Unique wiggled groove for fibre.
- 4016 channels
 - 0.07% bad channels.
Events in the SMRD

Beam Timing in the SMRD

SMRD Beam Event Hits

Time Distribution in Integration window
Impact of the Earthquake on ND280

- The Near Detector was running when the Earthquake struck in March
- The UPS maintained power and systems shut down as UPS power was used up.
 - UPS batteries have been replaced.
- Since the earthquake all near detector subsystems have been powered up and cosmic data has started to be collected.
 - Damage to the subsystems is minor.
 - Work will be carried out over the summer to recommission the detector.
- The near detector will be ready to start collecting data with the beam in December.
Physics Analysis at ND280

- Currently only available from T2K run 1 data.
 - Analysis of run 2 data is ongoing.

- First ND280 Analyses:
 - Inclusive ν_μ rate
 - Input to oscillation analysis via beam normalisation
 - FGD+TPC
 - Inclusive ν_e rate
 - Verification of beam prediction.
 - FGD+TPC

- ND280 has a rich physics program to come.

- For more details talk by D. Brook-Roberge on Thursday.
\(\nu_\mu \) CC Event Selection at ND280

- Inclusive Analysis, just uses the muon.
 - CCQE analysis is more complex, will be used in the future.
- Require
 - No track in TPC1
 - Vertex in FGD1 and at least 1 track \(p > 50 \text{MeV} \) in TPC 2
 - Select highest momentum track
 - TPC \(dE/dx \) consistent with muon.
 - If no tracks in TPC2, repeat with FGD2/TPC3 combo
ν_μ CC Inclusive measurement

Data/MC = $1.036 \pm 0.028^{+0.044}_{-0.037}$ (stat) +0.038 (phys model)

- Systematics include
 - TPC Tracking efficiency, Detector matching
 - dE/dx distribution
 - Backgrounds

T2K Run 1 = 2.88×10^{19} pot
Measurement of the Beam ν_e component.

- Unlike ν_μ analysis there are significant backgrounds:
 - Muons
 - Need very good PID
 - Electrons
 - Interactions from ν_e are not the only source of electrons.
 - External Backgrounds
 - Beam induced gammas that shower in the FGD

- Run 1 analysis
 - Uses FGD+TPC combination
 - Require
 - Vertex in FDG fiducial volume
 - No track in upstream TPC
 - Most energetic track is negative and electron like
 - TPC PID is crucial
 - $M_{\text{inv}} < 100$ MeV if 2 tracks
 - Photon rejection
 - $0 < p < 2000$ MeV
\(\nu_e \) Inclusive Measurement

- We carry out a maximum likelihood fit to signal and background
- Background dominated by real electrons

- Fit gives 8 beam \(\nu_e \) events.

\[
\frac{N_{\nu_e}}{N_{\nu_\mu}} = 0.010 \pm 0.007 \text{(stat)} \pm 0.003 \text{(sys)}
\]

\[
\frac{(N_{\nu_\mu}/N_{\nu_e})_{\text{Data}}}{(N_{\nu_\mu}/N_{\nu_e})_{\text{MC}}} = 0.6 \pm 0.4 \text{(stat)} \pm 0.2 \text{(sys)}
\]

T2K Run 1 = 2.88\times10^{19} \text{ pot}
Conclusions

• The T2K near detector suite is working well

• The near detector survived the earthquake and will be ready for data taking when JPARC resumes operations in December

• First results from the near detector are available and are used in T2K oscillations analyses
 • In the future additional near detector information will be added to the oscillation analyses.
 • Neutrino cross section measurements will be produced.
Events at ND280