

MINER**ν**A Status & Reconstruction

Gabriel N. Perdue The University of Rochester NuFact 11 2011 August 3

On Behalf of the MINER**ν**A Collaboration

Outline

- Introduction to MINER**ν**A: **ν**-nucleus scattering.
- Detector & Operations.
	- See M. Kordosky's talk for a discussion of our beamline.
- Current Analysis Efforts Reconstruction Status. Emphasis on methodology.
	- See presentations by B. Ziemer and J. Devan for application of these techniques.

The MINER**ν**A Collaboration

About 100 Nuclear & Particle Physicists from 22 Institutions:

G. Tzanakos *University of Athens*

J. Cravens, M. Jerkins, S. Kopp, L. Loiacono, J. Ratchford, R. Stevens IV *University of Texas at Austin*

D.A.M. Caicedo, C.M. Castromonte, H. da Motta, G. A. Fiorentini, J.L. Palomino *Centro Brasileiro de Pesquisas Fisicas*

> J. Grange, J. Mousseau, B. Osmanov, H. Ray *University of Florida*

D. Boehnlein, R. DeMaat, N. Grossman, D. A. Harris, J. G. Morfn, J. Osta, R. B. Pahlka, P. Rubinov, D. W. Schmitz, F.D. Snider, R. Stefanski *Fermilab*

> J. Felix, A. Higuera, Z. Urrutia, G. Zavala *Universidad de Guanajuato*

M.E. Christy, C. Keppel, P. Monagham, T. Walton, L. Y. Zhu *Hampton University*

> A. Butkevich, S.A. Kulagin *Inst. Nucl. Reas. Moscow*

G. Niculescu, I. Niculescu *James Madison University*

E. Maher *Mass. Col. Lib. Arts*

L. Fields, B. Gobbi, L. Patrick, H. Schellman *Northwestern University*

> N. Tagg *Otterbein College*

S. Boyd, I. Danko, S.A. Dytman, B. Eberly, Z. Isvan, D. Naples, V. Paolone

University of Pittsburgh

A. M. Gers, N. Osbas, J.D. Valasures *University of Pittsburgh*

A. M. Gago, N. Ochoa, J.P. Velasquez *Pontificia Universidad Catolica del Peru*

S. Avvakumov, A. Bodek, R. Bradford, H. Budd, J. Chvojka, M. Day, H. Lee, S. Manly, C. Marshall, K.S. McFarland, A. M. McGowan, A. Mislivec, J. Park, G. Perdue, J. Wolcott *University of Rochester*

> G. J. Kumbartzki, T. Le, R. D. Ransome, E. C. Schulte, B. G. Tice *Rutgers University*

> > H. Gallagher, T. Kafka, W.A. Mann, W. P. Oliver *Tufts University*

> > > C. Simon, B. Ziemer *University of California at Irvine*

R. Gran, M. Lanari *University of Minnesota at Duluth*

M. Alania, A. Chamorro, K. Hurtado, C. J. Solano Salinas *Universidad Nacional de Ingeniera*

W. K. Brooks, E. Carquin, G. Maggi, C. Pea, I.K. Potashnikova, F. Prokoshin *Universidad Tcnica Federico Santa Mara*

L. Aliaga, J. Devan, M. Kordosky, J.K. Nelson, J. Walding, D. Zhang *College of William and Mary*

MINER**ν**A

(Main INjector ExpeRiment **ν**-A)

- *What*: On-axis neutrino-nucleus crosssection experiment in the wide-band NuMI (Neutrinos at the Main Injector) beamline at Fermilab. Located directly in front of the MINOS Near Detector.
- Why: Some tensions in low energy (less than 10 GeV) cross-sections; many measurements are bubble-chamber era with low statistics and large uncertainties.
- *Why*: Provides critical input to future neutrino oscillation experiments.
- *Why*: Unique (weak-only) probe of the nucleus. Many quantities of interest: axial form factors as a function of A and momentum transfer (Q²), quark-hadron duality, x-dependent nuclear effects, etc.

Oscillation Measurement: **νμ** Disappearance

- Recall oscillation probability depends on E**ν**.
- However, experiments measure E_{vis} , usually with Quasi-Elastics.
- Evis depends on flux, cross-section, and detector response.
- **•** Final state interactions are important! **v** interacts in dense nuclear matter, and products do not always cleanly exit the nucleus.
	- E_{vis} is not equal to $E_v!$
	- Near/Far detector ratios cannot handle all the uncertainties because the E_{Near}/E_{Far} spectra are different due to matter $\&$ oscillation effects, etc. \mathbf{L} Near \mathbf{L} + \mathbf{H} ar S

Gabriel N. Perdue - The University of Rochester $5 \,$ $5 \,$ $\,$ NuFact 11 - WG2 $\overline{1}$ $\frac{640110111111044401110018}{60}$ University of Rochester 5

! **In a more detailed sense, larger** !**13 means smaller**

" **/ anti-**" **asymmetries for the same value of** #**CP**

Gabriel N. Perdue - The University of Rochester $6 \,$ $6 \,$ NuFact 11 - WG2 \cdot - 11 11.1

Charged Current Quasi-Elastic (CCQE) Scattering on Carbon

- Open questions in interaction physics abound. For example:
	- MiniBooNE & SciBooNE are in agreement, but conflict with NOMAD data at higher energy.
	- We need ONE detector that can easily do both a "MiniBooNE style" measurement (one track $+ X$) and a "Nomad style" measurement (two tracks).
	- Need to examine multi-nucleon final states (meson exchange currents).

Gabriel N. Perdue - The University of Rochester 7 NuFact 11 - WG2

Plastic Scintillator Strips: The Active Detector Elements.

Strips are bundled into PLANES to provide transverse position location across a module.

Fibers bundled into cables to interface with 64 channel multi-anode PMTs.

Planes are mounted stereoscopically in UX or VX orientations for 3D tracking. There are typically two planes per module.

MINER**ν**A Modules

Modules have an outer detector frame of steel and scintillator...

...and an inner detector element of scintillator strips and absorbers/targets.

- Four basic module types:
	- Tracker: two scintillator planes in stereoscopic orientation.
	- Hadronic Calorimeter: one scintillator plane and one 2.54-cm steel absorber.
	- Electromagnetic Calorimeter: two scintillator planes and two 2 mm lead absorbers.
	- Nuclear Targets: absorber materials (some with scintillator planes).
- Instrumented outer-detector steel frames.
- 120 Total Modules: 84 Tracker, 10 ECAL, 20 HCAL, 6 Nuclear Targets.

Gabriel N. Perdue - The University of Rochester 10 10 NuFact 11 - WG2

Mata Collection Data Collection

- · Completed full detector installation in March, 2010.
- Running in NuMI "Low Energy" mode.

Gabriel N. Perdue - The University of Rochester 11 and 11 and 11 and 11 and 11 and 11 and 11 - WG2

Current Data Sample (GENIE 2.6.2 Generator Raw Events)*

Target Masses: CH Fiducial = 6.43 tons, C = 0.17 tons, Fe = 0.97 tons, Pb = 0.98 tons w/ 90 cm vertex radius cut. (* [http://www.genie-mc.org\)](http://www.genie-mc.org)

MINER**ν**A Event Displays

- Stereoscopic: 3 views X (view from above), U, V (60°). X views are twice as dense!
- STRIP (Transverse) vs. PLANE (Longitudinal) for the Inner Detector, TOWER (Radial) vs. PLANE (Longitudinal) for the Outer Detector.

Reconstruction: Qualitative Overview

- Time-Slicing: Peak-finding and bundling hits according to the hit time distribution. MINERvA jargon: build "slices."
- Clustering: Bundle hits within a plane.
- Tracking: Look for the longest tracks first. Match tracks into MINOS for range and curvature reconstruction.
- Vertexing: Bundle tracks together.
- Tracking: Look for shorter tracks (anchored).
- Blobbing: Shower formation isolated showers and vertex activity.

Time Slicing

Record entire beam spills... Things look messy!

Timing comes to the rescue!

Time Slicing

Record entire beam spills... Things look messy! Timing comes to the rescue!

- Peak-finding in the hit-timing distribution grow slices forward in time.
- Satisfy minimum energy and hit number requirements, grow until gaps appear.
- Conservative: Prefer to lump two interactions together and split with reconstruction information than break a real event.

Gabriel N. Perdue - The University of Rochester 16 and 16 and 16 and 17 - WG2

Time Slicing

Can now pick out single interactions easily! Note: Lot's of through-going "rock muons" in the data...

Clustering

- Group neighboring hits within a plane.
- Study hit topology (size and distribution of hits) *and* hit energy sum:
	- "Low Activity" Hit sum has very low energy.
	- "Trackable" MIP consistent groups: narrow, no more than MIP-like energy 1-8 MeV in each hit *and* no more than 12 MeV in the sum.
	- "Heavy Ionizing" Narrow but high energy: very high energy single digits are allowed. No upper bound on the sum.
	- "Superclusters" Broad or double-peaked, etc. shower-like clusters.

Gabriel N. Perdue - The University of Rochester 19 19 NuFact 11 - WG2

Long Tracking

- Consume Trackable and Heavy-Ionizing clusters only.
- Form 2D seeds with at least three hits in each view (X, U, or V).
	- This enforces an 11-plane $(\sim 20 \text{ cm in pure plastic})$ minimum.
- Merge seeds and then look for 3D tracks.
- Fit the track with a custom Kalman Filter (take multiple scattering into account as the track moves through the detector).

X-View Close-Up

Gabriel N. Perdue - The University of Rochester 21 and 22 and

Two-View Tracking

• Two views are sufficient to reconstruct three dimensional information.

Clusters and Tracking

• Data/MC comparison of cluster energies on a track.

Tracking Calibrations: Strip-to-Strip

Leverage good residuals, triangular strip shape.

Find deviations along the strip for rotations & offsets.

Shower Reconstruction

- MINER**ν**A Jargon: *Blobbing.*
- Several algorithms: peak-find-and-grow, cone algorithms, spatially anchored searches, etc.
- Active current development is aimed at:
	- electromagnetic final states (showers),
	- vertex activity.

Gabriel N. Perdue - The University of Rochester 28 NuFact 11 - WG2

Shower Reconstruction

- Low to medium energy electrons reconstructed by seeding a cone with a track, and attaching isolated "blobs."
- Isolated blobs built by a peak-finding algorithm that searches each view, and then combines the 2D objects into a 3D object.

Blobs are how we currently handle un-trackable activity.

Gabriel N. Perdue - The University of Rochester 29 NuFact 11 - WG2

Particle ID

- Current Methods:
	- **MINOS-Matching: Assume the particle is a muon.**
	- dE/dX Profile Fits: Pion/Proton separation.
		- Also used in a multi-variate PID for stopping muon/pion separation (developmental).
	- Michel Tags.
		- Veto pions in a muon-only CCQE-like analysis (developmental).

Gabriel N. Perdue - The University of Rochester 31 31 NuFact 11 - WG2

Michel Electrons

Gabriel N. Perdue - The University of Rochester 32 NuFact 11 - WG2

Michel Electrons

MC is background free μ. Data contains a small μ⁺ contamination. Nominal **μ**- lifetime in carbon is 2026 ns.

Gabriel N. Perdue - The University of Rochester 33 NuFact 11 - WG2

Conclusions

- MINERvA is functioning well & recording data as NuMI delivers P.O.T.
- Reconstruction is under development but reaching critical mass to do interesting physics, particularly for charged current channels, and especially for muon-flavor neutrinos.

Other MINER**ν**A Talks

- Elastic Scattering B. Ziemer, Thursday Morning.
- CC Inclusive Events & Nuclear Targets J. Devan, Thursday Morning.
- NuMI Flux M. Kordosky, Thursday Afternoon.

Thank You for Listening!

Gabriel N. Perdue - The University of Rochester NuFact 11 - WG2

TITTESTET

Back-Up

Gabriel N. Perdue - The University of Rochester NuFact 11 - WG2

MINER**ν**A Motivations

- We are now entering a period of precision neutrino oscillation measurements.
- To maximize oscillation effects, need $\Delta m^2 \times L/E_{\text{Beam}} \sim 1$.
- For $\Delta m^2 \sim 2.5 \times 10^{-3}$ eV² and L \sim 100's of km, $E_{\text{Beam}} \sim \text{few} \text{ GeV}$ range.
- Therefore, we need precision measurements of neutrino cross sections in this range.

MINER**ν**A Modules

Modules have an outer detector frame of steel and scintillator and an inner detector element of scintillator strips and absorbers/targets.

Planes are mounted stereoscopically in XU or XV orientations for 3D tracking.

Residual between a fitted position along a track and the charge-weighted hit in that plane for a sample of through-going muons.

Gabriel N. Perdue - The University of Rochester 39 NuFact 11 - WG2

MINER*vA* "Frozen Detector"

- Partial installation of 34 tracking, 10 ECAL, and 20 HCAL (full back calorimetry) completed November 12, 2009.
- Collected data in this configuration until early January, 2010 when we resumed installation (and continued data-taking with the "Downstream Detector").
- One nuclear target module (Fe, Pb) and one module instrumented as veto included for the "Frozen" period.

- MINER**ν**A installation finished in March, 2010.
- He target to be filled soon.
- H₂O target to be installed in soon.
- **Example 1**
Helion below is not to scale (t) <u>Marchar</u>is and
Materiaris and • Cross-section below is not to scale (the

• After time-slicing, we have an isolated interaction.

Gabriel N. Perdue - The University of Rochester 42 NuFact 11 - WG2

• First, we clean away low significance hits and form clusters (shown here as overlays on the hits).

Gabriel N. Perdue - The University of Rochester 43 NuFact 11 - WG2

• After clustering, we run long-track finding.

Gabriel N. Perdue - The University of Rochester 44 NuFact 11 - WG2

• With tracks in hand, we can form vertices.

Gabriel N. Perdue - The University of Rochester 45 NuFact 11 - WG2

• We search for activity around the vertex and reconstruct isolated showers away from the vertex.

• (Near) Final Reconstruction Picture, including track matching into MINOS.

• Estimate tracking & matching efficiency by beginning with a track in MINOS and looking for a track in MINER**ν**A.

Reconstruction: Track Matching

• MC data discrepancy is likely due inadequate dead time and pile-up simulation.

