Detectors for the Next
Generation of Neutrino
Beams

A. Marchionni, ETHZ
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= Detector technologies
» Magnetized Iron, Water Cherenkov, Totally Active Scintillator, LAr TPC
= Accelerator neutrino beams
 SuperBeams, Beta Beams, Neutrino Factory
= Additional fundamental physics?
e Astrophysical neutrino sources, rare processes
= Extrapolation from present detectors
e just “the bigger than the past the better’? New approaches, more
segmentation, more fine-grained, magnetization?
= Detector R&D
* photodetectors, LAr technology
= Some concluding thoughts



Present neutrino etectors
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...and their events

S

Charge (pe)

visible energy
# of decay-e
2y Inv. mass
recon. energy

: 1049 MeV
:0

: 0.04 MeV/c?
:1120.9 MeV

uuuuu

— 500

yiem)

a0 | N
[ SRR I P S
" 500 1000 180 %

Times (ns)

*
-

0.40 m

Induction Il view

NOvA - FNAL E929
Run: 11230010
Evant: 441526

UTC SunJan 16,2011 10— iy———3———37—

10:45:34 BO6E1 7084




Next generation of neutrino

beams

= SuperBeams (MW att scale proton beam power)
e mainly z* — u"v,, with v, contaminatiom from p and K (~0.5-1%)
 from wide-band to off-axis beams: tuning of v beam peak energy and width
* main channels: v, — v, ,v,—v,,v,— Vv,

= or strict selection and acceleration of neutrino parent

= Beta Beams

* pure v, / v, from radioactive beta decays

main channels:

°He | 18Ne | 8Li |®B E <2y(Q-m,) VoV vy
] N ] N e er Ve n
ecay |F" [P [P |P v ~ 100-400
Q(MeV) |35 |30 |13.0 |13.9

= Neutrino factory Beams
* v beams from u decays inastorage ring u" —>e'v,v,

* Baseline option: E, = 25 GeV
* Low Energy NF: E = 4-5 GeV

channels
"golden v,—v,
= silver Vo — V.
= platinum v, —v,



Additional fundamental physics
with a large neutrino detector?

= Baryonic number violation
* proton decay searches are a primary tool to address physics at the GUT
scale (as well as v masses and mixing)
= An observatory for astrophysical neutrinos (in order of decreasing energy)
e atmospheric neutrinos
« direct detection of v_in atmospheric neutrinos
* supernova core collapse neutrinos
» diffuse supernova neutrino background
* solar neutrinos
* geo-neutrinos
= Astrophysical neutrino sources could still be important for the
determination of neutrino properties

A neutrino detector sensitive to V. down to ~10 MeV would also
be capable of measuring vV, V. from a y* decays at rest source
generated by high intensity cyclotrons (Daedalus proposal)



Magnetized Iron Neutrino
Detector

= 2 sections, each 15m long
= tracking calorimeter with interleaved planes of steel and
solid scintillator

= total of 486 layers of 2.54 cm Fe planes, 8 m wide

= 1 cm thick and 4.1 cm wide solid scintillator strips with
WLS fiber readout

= 25800 m? active detector planes
» ~1.5 T toroidal magnetic field

= longitudinal granularity 1.5 X,
= 5.4 kton total mass

* 14 m x 14 m steel plates, 3.0 cm thick

» 100 kA-turn for magnetization using
Superconducting Transmission Lines, providing
a toroidal field between 1 Tand 2.2 T

» Fe/Sci = 3 cm/2 cm (2 planes of scintillator,
with 1 cm x 3.5 cm cross section)

* 50 m - 100 m length — 50 kton — 100 kton




MIND efficiency and
background rejection

Cervera, Laing,
Martin-Albo, Soler

MIND response to the golden channel
(wrong sign muons)
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Super-K
Total volume 50 kton
Fiducial 22.5 kton
11129 20" ID PMTs
40% coverage
1885 8" OD PMTs

Water Cherenkov
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Plat form

Inner Detector
Access Drift

Hyper-K (current baseline)

1Mton total vol.
540kton fiducial vol.

Opaque Sheet

Liner Water Purification System
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Dia. ¢43m
Vidth 48m

Inner Detector

Inner Detector {D43m x L(5x50m)} x 2
PMT ~100,000 (20inch)
(Photo-coverage 20%)




...or with vertical tanks
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LBNE DUSEL

= \Water Tank

* 53m Dia. x 54m vertical
= Fiducial Volume

* 50m Dia. x 51m vertical

i
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LAGUNA - Frejus \H [P o
MEMPHYS
2 independent modules, 5
330000 m3 each

220000 8-10" PMTs
=~ 500 kton fiducial mass

@ Lombardi

07.12.2010



Totally Active Scintillator
Detector (segmented) |
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Totally Active Scintillator
Detector (segmented) Il

A. Bross et al., Phys. Rev. D 77 (2008) 093012

6.7M channels = 20x NOVA

Injection Molded Ultem
Cold Pipe Support Ring

50K Trace Cooling
Invar Tube

Invar Cryopipe Extruded Aluminum

NbTi/ Copper
Superconductor
Braid

ylar

Extruded Alu
S0K Thermal Shield

Superconducting Transmissison Line

Perforated Invar
Flow Liner & Support

could be used to construct large solenoids

(15 m ¢, 75 m long) capable of producing
0.5T field

V" VECTOR FIELDS



Totally Active Scintillator

Detector (non-segmented)

o rexino ._I\I

Low Energy
Neutrino p
Astronomy il

Target volume
* height 100 m

* diameter 26 m |
50 kton liquid scintillator |

> ‘ll [ 3 .'

active mass of 278 tons of Shielding from cosmics:
pseudocumene, doped with PPO 4000 m.w.e.

» Geoneutrinos

* Solar neutrinos

e Supernova burst neutrinos, diffuse supernova neutrinos
 Proton Decay

* Tracking capability being investigated for use with v beams




From bubble chamber to LAr TPC

Bubble & (mm) 3
Density (g/cm® 1.5

X, (cm) 11.0

At (cm) 495

dE/dx 2.3
(MeV/cm)

2.7 ton drift chambers

target

Density (g/cm3) 0.1
2% X,/chamber

0.4 T magnetic field

TRD detector
Lead glass calorimeter

A Collection view

=1 B
o v,
ICARUS 600 ton
L 1.15m

Resolution (mm3)  3x3x3

Density (g/cm3 1.4
X, (cm) 14.0
At (cm) 54.8

dE/dx (MeV/cm) 2.1

C. Rubbia,
CERN Report 77-8,
May 1977



D.B. Cline, F. Raffaelli, F. Sergiampietri
JINST 1 T09001 2006

B. Baller, GLA2011 @

Concepts for large LAr TPC
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B. Baibussinov et al., Astr. Phys. 29 (2008) 174

D. Angeli et al., JINST 4 (2009) P02003
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Charge readout in double

.Cathu-do (- HY)

phase LAr with amplification | a. rubbia hep-ph/040211
Venice, Nov 2003
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Comparison Water - liquid Argon

Particle Cerenkov Threshold | Corresponding Range
in H,O (MeV/c) In LAr
(cm)
e 0.6 0.07
M 120 12
n 159 16
K 568 59
D 1070 105

= LAr allows lower thresholds than Water Cerenkov for most particles

= Comparable performance for low energy electrons




QUANTUM EFFICIENCY (%)

Photodetector R&D

High QE PMTs Hybrid Avalanche Photo-Detector(HPD)
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Technical issues for large
LAr TPCs

Readout devices
Diffusion and electronics

High Voltage— Long Drift <|

systems
Argon Purity

Detector engineering, / \

safety, underground === LAr vessel Argon Purification
construction Cryogenic pumps



LAr R&D
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Charge readout In double phase LAr

A. Badertscher et al., NIM A641 (2011) 48 ,
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World-wide effort on

event reconstruction in LAr |
ICARUS 50 L @ CERN

ICARUS 600 ton @ LNGS
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C. Rubbia et al., arXiv:1106.0975 [hep-ex]




World-wide effort on

event reconstruction in LAr 1l

ArgoNeut 175 L @ FNAL
Data in black, MC in red
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World-wide effort on

event reconstruction in LAr 111

250 L @ J-PARC J.Phys.Conf.Ser. 308 (2011) 012008
Tagged low-momentum Kaon test beam
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R&D on a magnetized LAr

] Refrigerator

A. Ereditato, and A. Rubbia, Nucl

Phys B (Proc Suppl) 155 (2006) 233

I 1< R ome
st k 4 = B parallel to E
Drift field Bending field
E-1kV/em B=01-1T
LAr ."H“‘“-q,wg
| light
. rer:;itmt
s DY CERN

Cethode LHe codling: Thermosiphon principle + thermal shield (=LAr)

Comparison of superconducting solenoidal magnets. ATLAS column corresponds to the solenoid.

= [ow field (B=0.1 T) to measure n charge

10 kton LAr 100 kton LAr ATLAS CMS
Magnetic induction (T) 0.1/0.4/1.0 0.1/0.4/1.0 2.0 4.0
Solenoid diameter (m) 30 70 2.4 6
Solenoid length (m) 10 20 5.3 12.5
Magnetic volume (m?) 7700 77000 21 400
Stored magnetic energy (G.) 0.03/0.5/3 0.3/5/30 0.04 2.7
Trigger scintillator T ‘B)
First operation of a LAr TPC
in a magnetic field 2
@ ETHzZ §
=

NIM A 555 (2005) 294 serae]

Drift chamber

~ 150 mm

= superconducting solenoid immersed in LAr
e LHe or HTS superconductor?

= strong field (B=1 T) to to measure ‘e’ charge
wm ®now part of WP4 Laguna-LBNO managed



Some concluding thoughts

= Maximize physics output of next generation large neutrino

detectors
« sensitivity to different channels and extended energy range, possibly down to
~10 MeV
* magnetization is an essential requirement if on a neutrino factory beam

= Synergy between precise detectors for long baseline neutrino

experiments, proton decay and astrophysical neutrinos
» Water Cherenkov and LAr TPCs detectors are appealing options for
superbeam (and f beam) v sources, with excellent sensitivity to proton decay
and astrophysical v sources
e underground location (> 500 m.w.e.) is a must

= Reduced systematics of a v factory beam offers unique sensitivity for
short baseline physics (cross sections, high Am? oscillations)
 mini-NuFactory with lower energy and intensity?

= R&D on photodetectors is important for all considered technologies
e also for LAr TPCs, since LAr is a very good scintillator



...detector specific

= TASD segmented detectors are interesting options as near detectors
e can they identify t’s?
o if considered for large far detectors, sensitivity to astrophysical sources, proton
decay (?) must be studied and an underground siting must be considered

= Proposals for up to 1 Mton Water Cherenkov detectors

= \World-wide effort on LAr technology
» 600 ton ICARUS detector operating at LNGS
* R&D on double-phase LAr-TPC, cold electronics, long drifts, purification, HV
systems
e ongoing studies for LAr vessels in underground conditions
* R&D on LAr detector magnetization
o exposure of small LAr setups (0.2 — 10 ton) on intense v beams or low energy
particle test beams already accomplished, ongoing or planned
« extensive efforts on automated event reconstruction in LAr
« 170 ton MicroBoone detector approved at FNAL to run on the Booster v beam
» kton-scale LAr prototype seen as necessary step towards 50-100 kton detectors

= ... towards realistic proposals for large LAr TPC



Backup



MINOS Detector Planes

Detector module with 20
scintillator strips

Assembled plane ready
to be lifted



MINOS Detector
Readout

Scintillator Module
” 2
4 J
2 z
< >

““Optical Connector §m Optical Conncetor”

Clear Fiber Ribbon Cable (2-6 m)

Clear Fiber Ribbon Cable (2-6 m)

Optical Conneclor Optical Conncctor
\ T . e /
Multiplex #15:  £.4 T Multiplex
Box 28 EE[® poy
“PMTs”

MUX boxes route 8 (1 in Near Detector) fibers to
one MAPMT pixel




: UPER
Super-Kamiokande detector SK

Water and air
purification system
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. Japan ¢ _2km
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village entrance

Multi-purpose observatory:

Neutrinos from Sun, atmosphere, supernova, relic SN's,
astrophysical point sources, and beams from K2K and T2K
Also: search for nucleon decay, WIMPS, other exotic particles

50 kton water Cherenkov
22.5 kton fiducial volume
(~ 2m away from wall)

2700 m.w.e overburden
cosmic ray BG ~3 Hz

~10 Solar v /day
~10 Atmospheric v / day

Inner detector (ID):
~11,100 50 cm PMTs
~ 2ns timing resolution
~ 4.5MeV threshold

Outer detector (OD):
water layer ~ 2m thick,
1,885 20 cm PMTs



UPER

History of Super- Kamiokande |

mmmmmmmmmmmmmmm
R — )

SK-I (Rebuild) SK-II (Rebwld) SK-1lI SK-1V

—
Aug2002 R o e

SK-III
11146 ID PMTs 5182 ID PMTs 11129 ID PMTs Electronics
(40% coverage) (19% coverage) (40% coverage) Upgrade

(T:Or;ﬁhe‘;f;gy) 5.0 MeV 7.0 MeV 5.0 MeV ~4.5MeV < 4.0 MeV

(Kinetic energy) ~4.5 MeV ~6.5 MeV ~4.5 MeV ~4.0 MeV <~3-5 MeV

Now Goal
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Water Cherenkov:
e/M identification

e At low momenta
one can correlate
the particle visible
energy with the
Cherenkov angle.
Muons will have
“collapsed” rings
while electrons are
~always at 42°,

e At higher

momenta, look at
the distribution of

light around

Cherenkov angle.
Muons are “crisp”,
electron showers
are “fuzzy”. See
plots and figures

at the right.
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Super-Kamiokande

Run 4234 Event 367257
97-06-16:23:32;58

Inner: 1904 hits, 5179 pe
outer; § hits, € pE (in-time)
Trigger Id: 0x07

D walli 885.0 cm

FC mu-like, p = 766.0 Mev/c
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Super-Kamickande

Run 4268 Event 7699421
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Reconstruction performance

p—>e*+n® MC

(free proton only) -/

vertex resolution |
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mode Period Detection
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Reconstruction
performance is not
degraded much for
p=>e*(u*)+r® modes.

Excellent efficiency even
with half PMT density

H. Aihara, Workshop for European Strategy for Neutrino Physics, 2009 CERN



Liquid Argon Time Projection
Chamber

Induced current Induced charge
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HOMAD

24 cm drift
wires chamber

-— 1987: First LAr TPC. Proof of principle.
. E=———. Measurements of TPC performances.

The

T

1.4 m drift

k Wire Chamber
H Structure——xs

Field

T Conrtany

1.4 m drift test.

50 litres prototype
chamber /

1997-1999: Neutrino beam
events measurements.

Readout electronics
optimization. MLFB
wwo  (evelopment and study.

/ 10 m3 industrial prototype
1999-2000: Test of final industrial solutions for the

ICARUS steps

3 ton prototype

1991-1995: First demonstration
of the LAr TPC on large masses.
Measurement of the TPC
performances. TMG doping.

wire chamber mechanics and readout electronics.

600 ton detector

(during ihstallation)

2001: 300 ton detector tested on surface in Pavia. 600 ton
2010: 600 ton detector operational at LNGS.

NIM A 527 (2004) 329
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250 It @ KEK

low energy K test beam
@ J-PARC

small test setups for readout
devices, electronics

~500 mm

~1150 mm

-
- L=
*J : A
. 1
el ~700 mm
SR

6 m3 @ CERN

to be proposed for test
beams in NA @ CERN

ArgonTube@ Bern

5 m drift, 0.4 ton
under assembly

1 ton LAr, Cockroft-Walton, LAr
recirculation and purification,
industrial electronics, safety,

optimized for dark matter
searches, in operation

full engineering demonstrator
for larger detectors + physics
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