Detectors for the Next Generation of Neutrino Beams

A. Marchionni, ETHZ NuFact'11, Geneva, 1-6 August 2011

- Detector technologies
 - Magnetized Iron, Water Cherenkov, Totally Active Scintillator, LAr TPC
- Accelerator neutrino beams
 - SuperBeams, Beta Beams, Neutrino Factory
- Additional fundamental physics?
 - Astrophysical neutrino sources, rare processes
- Extrapolation from present detectors
 - just 'the bigger than the past the better'? New approaches, more segmentation, more fine-grained, magnetization?
- Detector R&D
 - photodetectors, LAr technology
- Some concluding thoughts

Present neutrino detectors

...and their events

Next generation of neutrino beams

- SuperBeams (MWatt scale proton beam power)
 - mainly $\pi^+ \to \mu^+ \nu_\mu$, with ν_e contamination from μ and K (~0.5-1%)
 - from wide-band to off-axis beams: tuning of v beam peak energy and width
 - main channels: $v_{\mu} \rightarrow v_{\mu}$, $v_{\mu} \rightarrow v_{e}$, $v_{\mu} \rightarrow v_{\tau}$
- or strict selection and acceleration of neutrino parent
- Beta Beams
 - pure v_e / \overline{v}_e from radioactive beta decays

	⁶ He	¹⁸ Ne	⁸ Li	8 B
Decay	β-	β^+	β-	β^+
Q (MeV)	3.5	3.0	13.0	13.9

$$E_{v} \le 2\gamma (Q - m_{e})$$
$$\gamma \sim 100-400$$

main channels: $v_e \rightarrow v_e$, $v_e \rightarrow v_\mu$

Neutrino factory Beams

- v beams from μ decays in a storage ring $\mu^+ \to e^+ v_e \overline{v}_{\mu}$
- Baseline option: $E_{\mu} = 25 \text{ GeV}$
- Low Energy NF: $E_{\mu} = 4-5 \text{ GeV}$

channels

- golden $v_e \rightarrow v_\mu$
- silver $\underline{\mathbf{v}_{\mathbf{e}}} \rightarrow \underline{\mathbf{v}_{\mathbf{\tau}}}$
- platinum $\overline{\mathbf{v}}_{\mu} \rightarrow \overline{\mathbf{v}}_{e}$

Additional fundamental physics with a large neutrino detector?

- Baryonic number violation
 - proton decay searches are a primary tool to address physics at the GUT scale (as well as v masses and mixing)
- An observatory for astrophysical neutrinos (in order of decreasing energy)
 - atmospheric neutrinos
 - direct detection of v_{τ} in atmospheric neutrinos
 - supernova core collapse neutrinos
 - diffuse supernova neutrino background
 - solar neutrinos
 - geo-neutrinos
- Astrophysical neutrino sources could still be important for the determination of neutrino properties

A neutrino detector sensitive to \overline{V}_e down to ~10 MeV would also be capable of measuring $\overline{V}_{\mu} \rightarrow \overline{V}_e$ from a μ^+ decays at rest source generated by high intensity cyclotrons (Daedalus proposal)

Magnetized Iron Neutrino Detector

MINOS

- 2 sections, each 15m long
- tracking calorimeter with interleaved planes of steel and solid scintillator
- total of 486 layers of 2.54 cm Fe planes, 8 m wide
- 1 cm thick and 4.1 cm wide solid scintillator strips with

WLS fiber readout

- 25800 m² active detector planes
- ~1.5 T toroidal magnetic field
- longitudinal granularity 1.5 X₀
- 5.4 kton total mass

- 14 m x 14 m steel plates, 3.0 cm thick
- 100 kA-turn for magnetization using Superconducting Transmission Lines, providing a toroidal field between 1 T and 2.2 T
- Fe/Sci = 3 cm/2 cm (2 planes of scintillator, with 1 cm x 3.5 cm cross section)
- $50 \text{ m} 100 \text{ m} \text{ length} \rightarrow 50 \text{ kton} 100 \text{ kton}$

MIND efficiency and background rejection

MIND response to the golden channel (wrong sign muons)

Main background from misidentification of v_{μ} (v_{μ}) CC interactions as the opposite polarity

~10-4

Water Cherenkov

PMT ~100,000 (20inch)

(Photo-coverage 20%)

39.3 m

Super-K
Total volume 50 kton
Fiducial 22.5 kton
11129 20" ID PMTs
40% coverage
1885 8" OD PMTs

...or with vertical tanks

LBNE DUSEL

- Water Tank
 - 53m Dia. x 54m vertical
- Fiducial Volume
 - 50m Dia. x 51m vertical

LAGUNA – Frejus **MEMPHYS**

2 independent modules, 330000 m³ each 220000 8-10" PMTs ≈ 500 kton fiducial mass

Totally Active Scintillator Detector (segmented) I

Totally Active Scintillator Detector (segmented) II

A. Bross et al., Phys. Rev. D 77 (2008) 093012

could be used to construct large solenoids (15 m φ, 75 m long) capable of producing 0.5 T field

Totally Active Scintillator Detector (non-segmented)

Borexino

active mass of 278 tons of pseudocumene, doped with PPO

Low Energy Neutrino Astronomy

Target volume

- height 100 m
- diameter 26 m
- 50 kton liquid scintillator

Shielding from cosmics: 4000 m.w.e.

- Geoneutrinos
- Solar neutrinos
- Supernova burst neutrinos, diffuse supernova neutrinos
- Proton Decay
- Tracking capability being investigated for use with v beams

LENA

From bubble chamber to LAr TPC

Bubble \varnothing (mm) 3 Density (g/cm³⁾ 1.5 X_0 (cm) 11.0 λ_T (cm) 49.5 dE/dx 2.3 (MeV/cm)

NOMAD

Resolution (mm ³)	3×3×3	
Density (g/cm ³⁾	1.4	
X ₀ (cm)	14.0	
λ_{T} (cm)	54.8	
dE/dx (MeV/cm)	2.1	

C. Rubbia, CERN Report 77-8, May 1977

Concepts for large LAr TPC

LBNE-LANND Cline, F. Raffaelli, F. Sergiampietri JINST 1 T09001 2006

Modular structure of 5³ m³ cubes **Evacuable Charge readout in** single-phase LAr

LBNE-LAr40

2x20 kton

B. Baller, GLA2011 45 m

3.7 m horizontal drift Not evacuable, membrane tank Charge readout in single-phase LAr

Scaled from Icarus-T600 by 2.663 Not evacuable **Charge readout in single-phase LAr**

bricks for the bottom support layer

Baibussinov et al., Astr. Phys. 29 (2008) 174

Comparison Water - liquid Argon

Particle	Cerenkov Threshold in H ₂ O (MeV/c)	Corresponding Range in LAr
		(cm)
e	0.6	0.07
μ	120	12
π	159	16
K	568	59
p	1070	105

- LAr allows lower thresholds than Water Cerenkov for most particles
- Comparable performance for low energy electrons

Photodetector R&D

High QE PMTs

Hybrid Avalanche Photo-Detector(HPD)

Better single photon time, energy and collection efficiency than PMTs

H. Sekiya (ICRR/Tokyo) Towards large flat-panel photosensors?

Gas photo-multiplier (GPM)

- Electron multiplication by gaseous avalanche
- single photoelectron sesitivity
- position resolution
- possibly large area

Technical issues for large LAr TPCs

BNL development of cold electronics

ICARUS signal feedthrough flange

ockroft-Walt

Charge readout in double phase LAr

World-wide effort on event reconstruction in LAr I

ICARUS 50 L @ CERN

ICARUS 600 ton @ LNGS

ICARUS-Milano, Phys.Rev. D74 (2006) 112001

C. Rubbia et al., arXiv:1106.0975 [hep-ex]

0.70 m

World-wide effort on event reconstruction in LAr II

World-wide effort on event reconstruction in LAr III

250 L @ J-PARC

J.Phys.Conf.Ser. 308 (2011) 012008

Tagged low-momentum Kaon test beam

Prototype setup with 1 cm readout pitch operated in single-phase LAr

R&D on a magnetized LAr

→ Refrigerator separato Two-phase He Magnet: solenoidal superconducting coil Charge readout **Bectronic** E=3kV/cm Drift field Bending field B=0.1÷1T E=1kV/cm LAr visible light race track LHe cooling: Thermosiphon principle + thermal shield (=LAr)

A. Ereditato, and A. Rubbia, Nucl Phys B (Proc Suppl) 155 (2006) 233

- superconducting solenoid immersed in LAr
 - LHe or HTS superconductor?
- **B** parallel to **E**
- low field (B=0.1 T) to measure µ charge
- strong field (B=1 T) to to measure 'e' charge
- now part of WP4 Laguna-LBNO managed by CERN

Comparison of superconducting solenoidal magnets. ATLAS column corresponds to the solenoid.

	10 kton LAr	100 kton LAr	ATLAS	$_{\rm CMS}$	
Magnetic induction (T)	0.1/0.4/1.0	0.1/0.4/1.0	2.0	4.0	
Solenoid diameter (m)	30	70	2.4	6	
Solenoid length (m)	10	20	5.3	12.5	
Magnetic volume (m ³)	7700	77000	21	400	
Stored magnetic energy (GJ)	0.03/0.5/3	0.3/5/30	0.04	2.7	
Stored magnetic energy (GJ)	0.03/0.5/3	0.3/5/30	0.04	2.7	

First operation of a LAr TPC in a magnetic field @ ETHZ

NIM A 555 (2005) 294

Some concluding thoughts

- Maximize physics output of next generation large neutrino detectors
 - sensitivity to different channels and extended energy range, possibly down to ~10 MeV
 - magnetization is an essential requirement if on a neutrino factory beam
- Synergy between precise detectors for long baseline neutrino experiments, proton decay and astrophysical neutrinos
 - \bullet Water Cherenkov and LAr TPCs detectors are appealing options for superbeam (and β beam) ν sources, with excellent sensitivity to proton decay and astrophysical ν sources
 - underground location (> 500 m.w.e.) is a must
- Reduced systematics of a v factory beam offers unique sensitivity for short baseline physics (cross sections, high Δm^2 oscillations)
 - mini-NuFactory with lower energy and intensity?
- **R&D** on photodetectors is important for all considered technologies
 - also for LAr TPCs, since LAr is a very good scintillator

...detector specific

- **TASD segmented detectors** are interesting options as near detectors
 - can they identify τ 's?
 - if considered for large far detectors, sensitivity to astrophysical sources, proton decay (?) must be studied and an underground siting must be considered
- Proposals for up to 1 Mton Water Cherenkov detectors
- World-wide effort on LAr technology
 - 600 ton ICARUS detector operating at LNGS
 - R&D on double-phase LAr-TPC, cold electronics, long drifts, purification, HV systems
 - ongoing studies for LAr vessels in underground conditions
 - R&D on LAr detector magnetization
 - exposure of small LAr setups (0.2 10 ton) on intense v beams or low energy particle test beams already accomplished, ongoing or planned
 - extensive efforts on automated event reconstruction in LAr
 - 170 ton MicroBoone detector approved at FNAL to run on the Booster v beam
 - kton-scale LAr prototype seen as necessary step towards 50-100 kton detectors
- ... towards realistic proposals for large LAr TPC

Backup

MINOS Detector Planes

MINOS Detector Readout

Super-Kamiokande detector

Multi-purpose observatory:

Neutrinos from Sun, atmosphere, supernova, relic SN's, astrophysical point sources, and beams from K2K and T2K **Also:** search for nucleon decay, WIMPS, other exotic particles

50 kton water Cherenkov

22.5 kton fiducial volume

(~ 2m away from wall)

2700 m.w.e overburden cosmic ray BG ~3 Hz

~10 Solar v /day ~10 Atmospheric v / day

Inner detector (ID):

~11,100 50 cm PMTs

~ 2ns timing resolution

~ 4.5MeV threshold

Outer detector (OD):

water layer ~ 2m thick, 1,885 20 cm PMTs

History of Super-Kamiokande

11146 ID PMTs (40% coverage)

Threshold: (Total energy) (Kinetic energy)

5.0 MeV ~4.5 MeV

5182 ID PMTs (19% coverage)

7.0 MeV ~6.5 MeV

11129 ID PMTs (40% coverage)

5.0 MeV ~4.5 MeV

Electronics Upgrade

~4.5 MeV < 4.0 MeV ~4.0 MeV <~3.5 MeV

Now

Goal

Water Cherenkov: e/µ identification

 At low momenta one can correlate the particle visible energy with the Cherenkov angle. Muons will have "collapsed" rings while electrons are ~always at 42°.

At higher momenta, look at the distribution of light around Cherenkov angle. Muons are "crisp", electron showers are "fuzzy". See plots and figures at the right.

Super-Kamiokande Run 4234 Event 367257 97-06-16:23:32:58 Inner: 1904 hits, 5179 pE Outer: 5 hits, 6 pm (in-time) Trigger ID: 0x07 D wall: 885.0 cm FC mu-like, p = 766.0 MeV/c > 137 Times (ns) Super-Kamiokande Run 4268 Event 7899421 97-06-23:03:15:57 Inner: 2652 hits, 5741 pE Outer: 3 hits, 2 pE (in-time) Trigger ID: 0x07 D wall: 506.0 cm FC e-like, p = 621.9 MeV/c Resid(ns) Figures from http://hep.bu.edu/~superk/atmnu/

Times (ns)

Reconstruction performance

mode	Period (coverage)	Detection efficiency
p→e++π ⁰	SK-I (40%)	44.6%
	SK-II (19%)	43.5%
p→μ++π ⁰	SK-I (40%)	35.5%
	SK-II (19%)	34.7%

Reconstruction performance is not degraded much for $p \rightarrow e^+(\mu^+)+\pi^0$ modes.

Excellent efficiency even with half PMT density

H. Aihara, Workshop for European Strategy for Neutrino Physics, 2009 CERN

Liquid Argon Time Projection

Chamber

24 cm drift wires chamber

1987: First LAr TPC. Proof of principle. Measurements of TPC performances.

The ICARUS steps

3 ton prototype

1991-1995: First demonstration of the LAr TPC on large masses. Measurement of the TPC performances. TMG doping.

50 litres prototype 1.4 m drift chamber

1997-1999: Neutrino beam events measurements. Readout electronics optimization. MLPB development and study. 1.4 m drift test.

10 m³ industrial prototype

1999-2000: Test of final industrial solutions for the wire chamber mechanics and readout electronics.

600 ton detector

2001: 300 ton detector tested on surface in Pavia, 600 ton

2010: 600 ton detector operational at LNGS.

NIM A 527 (2004) 329

single LAr phase, wire planes

C. Rubbia, CERN Report 77-8, May 1977

double phase Ar **Large Electron Multiplier (THGEM)**

- Free e- drift in LAr towards liquid-vapour interface.
- e are extracted to the vapour via extraction grids $(E_{lig} > 2.5 \text{ kV/cm}).$
- e⁻ undergo multiplication in double stage LEM.
- Multiplied charge induces signals on the segmented electrodes of top LEM and anode.

A. Badertscher et al., arXiv:0811.3384

Ionization charge readout techniques in LAr

secondary scintillation from THGEM

P.K. Lightfoot et al., JINST 4 (2009) P04002

 V_{THGEM} =2.2 kV

single phase LAr

@ CERN

GLACIER Roadmap

small test setups for readout devices, electronics

to be proposed for test beams in NA @ CERN

ArDM (RE18), presently @ CERN

1 ton LAr, Cockroft-Walton, LAr recirculation and purification, industrial electronics, safety, optimized for dark matter searches, in operation

full engineering demonstrator for larger detectors + physics

ArgonTube@ Bern

5 m drift, 0.4 ton under assembly