

The impact of neutrino scattering data for oscillation measurements

Jeff Nelson William & Mary

13th International Workshop on Neutrino Factories, Superbeams & Beta Beams

> University of Geneva/CERN August, 4th 2011

Outline

- A bit of history ...
- A few examples
 - muon neutrino disappearance
 - antineutrino disappearance
 - neutrino electron appearance
 - The QE saga as a lesson
- Looking forward
 - Precision disappearance and appearance
 - The roles/needs for the players of the future

An obvious things to start with ...

- Total cross section -> event totals -> sensitivity
- Oscillations depend on L/E
 - Improved oscillations measurements require better modeling of "E" based on final state
 - FSI/nuclear effects
 - What you see E_{vis} doesn't add up to "v"
 - Angles modified, particles absorbed
 - Can't always trust kinematic reconstruction
- Backgrounds are need to be modeled with their own cross sections
 - More aggressive signal selection & background suppression can imply more systematics unless one knows the background accurately
- Need to know rates and properties of below-threshold particles
 - Background contributor, resolution killer & systematic bias

We were "here" just after proof of oscillations ...

• NUINT01: Lipari, arXiv hep-ph/0207172

- The first of a long set of productive workshops bringing together the neutrino and electron scattering communities, theory and experiment
 - Recall that Jlab was in its 6th year of beam
 - Their early results were starting to pour in it was a very exciting time for the hadronic physics community

From S. Zeller's nufact03 neutrino data summary

From S. Zeller's nufact03 neutrino data summary

- Program of systematic comparisons of the generators
- Note the correlation Between the different generators
- Spread of generators is not a good error estimate

An example use of scattering data and model/generators

MINOS neutrino disappearance analysis ... (c.f. J. Hartnell's talk)

- AGKY model of recoil system (2008)
- A hadronization model for few-GeV neutrino interactions
 - T. Yang, C. Andreopoulos, H. Gallagher, K. Hofmann, P. Kehayias, Eur. Phys. J. C (2009) 63, 1
 - Into GENIE
- Tuned on an extensive mining of bubble chamber data
- Developed to try to model the initial differences seen in MINOS ND NC events

An example of a plot used in their validation

Fig. 7 Average charged-hadron multiplicity in the forward and backward hemispheres as functions of W^2 : (a) vp, forward, (b) vp, backward (c) vn, forward, (d) vn, backward. Data points are taken from [7, 25, 26]

J. Nelson, W&M

NuFact2011 – scattering & oscillations

Example (RHC – antineutrino-tune) distribution after beam tuning

MINOS FD data by resolution bin

Genie/NEUGEN

moving to more complete error estimates

for the MINOS 2008 disappearance analysis (See Gallagher 45th Karpacz School, '09)

J. Nelson, W&M

NuFact2011 - scattering & oscillations

Dytman, Gallagher & Kordosky (arXiv:0806.2119)

 Systematic error estimate on the visible (calorimetric) shower energy for the MINOS for disappearance analysis

branching ratios				
parameter	1σ uncertainty (%)			
π charge-exchange	50			
π elastic	10			
π inelastic	40			
π absorption	30			
π secondary π production	20			
N absorption	20			
N secondary π production	20			
N elastic	30			
cross-sections				
parameter	1σ uncertainty (%)			
π total cross-section	10			
N total cross-section	15			

Systematics on the MINOS CC result

Includes component due to syst comparing gcalor pion modeling to test beam results – secondary interactions

		$7.2 imes10^{20}$ POT Fiducial	
۱ Shift	Amount	$\delta(\Delta m^2)$	$\delta(\sin^2(2\theta_{23}))$
Shower Energy	1σ	0.049	0.001
Rel. Shower Energy	1.9%/1.1%	0.008	0.004
Norm.	1.6%	0.030	0.001
NC Bknd.	20%	0.008	0.008
μ Momentum	2%/3%	0.038	0.001
$\sigma_{ u}$ (sum in quadrature)	1σ	0.007	0.004
Beam	1σ	0.009	0.000
$\overline{ u}_{\mu}$ wrong-sign	30%	0.003	0.002
RAF only	1σ	-	-
Total		0.071	0.010

Piano/Harpsicord program

- It is not just neutrino cross sections
- They are exposing a small detector to pions at TRIUMF to help better model secondary interactions of muons in T2K data [WG #2 Ikeda, yesterday]
 MINOS had their test beam run too
- This sort of measurement of hadron scattering data needed for better precision results in any neutrino cross section
- measurement and E recontruction

Muon/pion ID in MINOS

• 4-parameter comparison

- Track length
- Mean energy of track hits
- Energy fluctuations along the track
- Transverse track profile

The Anti-neutrino Analysis

- Essentially the neutrino analysis of 2008
 - No resolution binning, shower estimator, new selector
 - Only stopped taking antineutrino data on March 22nd
- What's different with antineutrinos?
 - Lower statistics ~1/12th events
 - Larger wrong-sign component
 - Interactions are less hadronic

Electron appearance in MINOS

- Electrons leave a compact core of high pulse height hits
- Contamination
 - NC: can be mistaken for EM shower (e.g. if here is a π^0 in the recoil or unlucky collection of unassociated depositions)
 - \circ v_{\rm u} CC: Hard to eliminate if track is small/embedded
 - \circ v_e CC: the 1.3% beam v_e CC events

- The electron identification variable
- MC based on tuned flux and GENIE
- LHS: NC-like
- RHS: electronenhanced
- Some residual issues after hard cuts to removed background

Systematics

Uncertainty on	
background events	
4.0%	
2.1%	
1.9%	
1.1%	
2.0%	
5.4%	

FD data and best fit for each LEM PID bin

A example of NC-like systematic in MINOS

A step lower in energy -> MiniBooNE

Charged-Current π^+

Phys. Rev. D83, 052007 (2011)

2000

27

• Crucial channel for v_{μ} disappearance measurements W • can bias CCQE signal if π^+ lost n,p n,p + coherent Error Bands First tracking of charged o(E) (cm²) IiniBooNE Measuremen 0.12 pions in a Cherenkov otal Uncertainty Prediction 0.1 detector! 0.08 0.06 Measured quantities: 0.04 • $\sigma(E_v)$, $d\sigma/dQ^2$, $d\sigma/dT_u$, $d\sigma/d\theta_u$, $d\sigma/dT_{\pi}$, $d\sigma/d\theta_{\pi}$, $d^2\sigma/dT_ud\theta_u$, 0.02 $d^2\sigma/dT_{\pi}d\theta_{\pi}$ (many firsts) 800 1000 1200 1800 600 1400 1600 Neutrino Energy (MeV) Ph.D. thesis, M. Wilking, University of Colorado WG #2: Louis

Phys. Rev. D83, 052009 (2011)

Charged-Current π^0

Phys. Rev. D83, 052009 (2011)

- Custom 3 Cherenkov-ring fitter developed to reconstruct both $\mu,\,\pi^0$
- Resonant-only process
 Magging discussion
- Measured quantities:
 - $\sigma(E_{\nu})$, $d\sigma/dQ^2$, $d\sigma/dT_{\mu}$, $d\sigma/dp_{\pi}$, $d\sigma/d\theta_{\mu}$, $d\sigma/d\theta_{\pi}$ (many firsts)

Ph.D. thesis, R. Nelson, University of Colorado Phys. Rev. D. **83**, 052009 (2011)

Examples of recent data: SciBooNE

- v CC coh-π: Phys.Rev.D78, 112004 (2008)
 - No evidence of CC coh- π
- v NC-π⁰: Phys.Rev.D81, 033004 (2010)
 - Cross section and π^0 kinematics, MC agree with data
- v NC coh-π⁰: Phys.Rev.D81, 111102 (2011)
 - Clear evidence of coh- π , R-S model agrees with data
- \bar{v} CC coh- π : preliminary results
 - Cross section ratio ~2σ away from zero
 - Data hint that non-zero CC coh- π events in very forward region (than R-S model)
- v CC-π⁰: preliminary results
 - Absolute cross section, working on syst. uncertainties
- K⁺ production measurement at the BNB: Phys. Rev. D84, 012009
- CC inclusive production measurement: Phys. Rev. D83, 012005

C. Mariani, Columbia University

NuFact11, Aug. 1st, 2011

v_{μ} CCQE Scattering

MB: A.A. Aguilar-Arevalo, Phys. Rev. D81, 092005 (2010).

New data and modeling being brought to address this problem

Can't put it all on one plot any more

J. Nelson, W&M

Nieves, Simo, & Vacas, arXiv:1106.5374

2p, 2h effects

Accounts for long range nuclear correlations & Multi-nucleon scattering with $M_A = 1.049$ GeV

Implications for resolution in QE energy reconstruction with muon

Examples of recent data: SciBooNE

A step even lower in energy beta beam & 2nd maximum in super beam

Saw here that "2p, 2h processes" significantly change overall cross sections

WG #1 Meloni

Moving up in energy: NF & MINOS+

In general the situation is better as DIS becomes dominant ...

Improved total cross section data (MINOS ND)

Ratio of cross sections

Could well need to know these better depending in

nature and the machine we decide to build for CP / CPT tests

Tau appearance ... World's from DONUT & OPERA

- Examples in SK & present in MINOS
- In low energy super-beam experiments they are not so significant
- In neutrino factory or higher energy atmospheric neutrinos they become significant

Take difference between two models as additional systematic:

Moving onward

Current landscape (<≈GeV)

- SciBooNE and MiniBooNE mature and transforming our knowledge of neutrinos interaction physics near 1 GeV
 - Strong interplay with neutrino experiments, theory & electron scattering data critical
- T2K ND-280 getting into the game (WG #2 Mccauley)
- MicroBooNE coming in a couple years
- Critical regime for precisions oscillations physics and sterile neutrino searches

Current landscape (<<GeV)

- Needed for super beam experiments looking for 2nd peak
- Needed for LE beta beam
- Not currently in the world's program ???
 - MicroBooNE might help ???
 - Address low energy excess in MiniBooNe
- Note to self: FS radiative corrections for e's not in current generators
 - Will be needed for precision work

>1 GeV

- MINERvA is collecting data
 - Running in NuMI low energy for next year
 - Running in NuMI medium energy during the NOvA
 - Good prospects, initial physics distributions
- Proposal for a LD/LH target for precision studies in low-density nuclei
 - Recall He nucleus is dense

Why so good at high energies? Narrow band beams

LE NBB scattering experiments ...

- T2K ND280 exists and collecting data
- NOvA is considering an off-axis fine-grain ND
 - SciNOvA Working Group within NOvA
 - Costing and optimizing detector Scibar-like detector in front of NOvA ND & muon stack
- Off-axis gives a 1+ GeV NBB
 - Allows detailed studies for NOvA particle ID development
 - NBB measurement centered above the T2K oscillation dip
 - Study feed down into T2K oscillation minimum

Use these event generators ...

- Scattering and oscillation experiments use the generators to make exclusive final states that can be propagated through a detector simulation
 - We need fully detailed descriptions or at least prescriptions to get there ourselves
- For interactions between theorists and experimenters we generally work with specific distributions
- Goal
 - The scattering experiments need to hear from theorists what distributions and conditions will give them the best ability to tune/test their models
 - Of course, we have to tell them what we can actually do
 - This has been on going

Moving forward ...

- Need precision neutrino scattering data in the energy regime of the experiment and on the correct targets
 - To squeeze the best sensitivity from an experiment need to have good modeling of the physics in the near detector
 - More than just feel-good physics
 - This means that theory needs to be melded with event generator design to make sure that predictions can be turned into detailed event kinematics
 - Look forward to seeing the details of the T2K systematics analysis
- Ingredients for precision & discovery
 - Precise flux determination by beam component by multiple methods, e.g.
 - Hadron production (dedicated session in WG2)
 - Muon flux measurement
 - Low-v/w method
 - A chance for common goals addressed collaboratively
 - Absolute shower energy scale
 - High quality test beams
 - Tests of secondary scattering (general & specific to experiment)
 - Measurements of nuclear effects / FSI
 - Seems like a good chance for common goals addressed collaboratively
 - Tight collaboration with experimenters in the electron scattering community
 - Theory & experiment talking the same language
 - Making sure to our data measures the same thing the theorist computed