Review of Present and Future Reactor Neutrino Experiments

Zelimir Djurcic
Argonne National Laboratory

NuFact2011: 13th International Workshop on Neutrino Factories, Super Beams and Beta Beams
August 1-6, 2011. Geneva, Switzerland
Neutrino Oscillation Results

Missing information in 3x3 ν mixing scheme:

1. What is ν\textsubscript{e} component in the ν\textsubscript{3} mass eigenstate, i.e. θ\textsubscript{13} = ?
 - Only know θ\textsubscript{13} < ~11°.

2. Is the µ - τ mixing maximal?
 - Only know sin22θ\textsubscript{23} > 0.90.

3. What is the mass hierarchy?
 - Normal or inverted?

4. Do neutrinos exhibit CP violation, i.e. is δ\textsubscript{CP} ≠ 0?

\[U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} = \begin{pmatrix} \text{Big} & \text{Big} & \text{Small?} \\ \text{Big} & \text{Big} & \text{Big} \\ \text{Big} & \text{Big} & \text{Big} \end{pmatrix} \]

\[\begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta\textsubscript{CP}} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta\textsubscript{CP}} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \]

\[\theta_{12} \sim 30° \]

\[\sin^2 2\theta_{13} < 0.11 \text{ at 90% CL} \]

\[\theta_{23} \sim 45° \]
Experimental Methods to Measure θ_{13}

- Long-Baseline Accelerators: Appearance ($\nu_\mu \rightarrow \nu_e$) at $\Delta m^2 \approx 2.5 \times 10^{-3}$ eV2
 - Look for appearance of ν_e in a pure ν_μ beam vs. L and E
- Use near detector to measure background ν_e's (beam and misid)

NOvA:
$\langle E_\nu \rangle = 2.3$ GeV
$L = 810$ km

T2K:
$\langle E_\nu \rangle = 0.7$ GeV
$L = 295$ km

- Reactors: Disappearance ($\overline{\nu}_e \rightarrow \overline{\nu}_e$) at $\Delta m^2 \approx 2.5 \times 10^{-3}$ eV2
 - Look for a change in ν_e flux as a function of L and E
 - Look for a non-$1/r^2$ behavior of the $\overline{\nu}_e$ rate
 - Use near detector to measure the un-oscillated flux

Double Chooz:
$\langle E_\nu \rangle = 3.5$ MeV
$L = 1100$ m
Oscillation probability complicated and dependent not only on \(\theta_{13} \) but also:

1. CP violation parameter (\(\delta \))
2. Mass hierarchy (sign of \(\Delta m_{31}^2 \))
3. Size of \(\sin^2 \theta_{23} \)

\[
P(\nu_\mu \rightarrow \nu_e) = \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)^2} \Delta_{31}^{-2}
+ \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(aL)}{(aL)^2} \Delta_{21}^{-2}
+ \cos \delta \sin 2\theta_{23} \sin 2\theta_{13} \cos \Delta_{32} \frac{\sin(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)} \frac{\sin(aL)}{(aL)} \Delta_{31} \Delta_{21}
+ \sin \delta \sin 2\theta_{23} \sin 2\theta_{13} \sin \Delta_{32} \frac{\sin(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)} \frac{\sin(aL)}{(aL)} \Delta_{31} \Delta_{21}
\]

\(\Rightarrow \) These extra dependencies are both a “curse” and a “blessing” since they will let us measure CP violation if \(\theta_{13} \) is big enough.
Accelerator vs Reactor Experiment

Reactor Disappearance Experiments

θ_{13} probed by measuring the disappearance of reactor produced electron anti-neutrinos.

- For θ_{13} need to work at an L/E matched to the atmospheric Δm^2.
- Reactors used in θ_{12} range as well: need to work at an L/E matched to the solar Δm^2 i.e. Kamland measurement at solar Δm^2.

$$P(\bar{\nu}_e \rightarrow \bar{\nu}_e) = 1 - \cos^4 \theta_{13} \sin^2 2 \theta_{12} \sin^2 \Delta_{21}$$

$$- \sin^2 2 \theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32})$$

$$\Delta_{ij} \equiv 1.27 \Delta m^2_{ij} L / E$$

L(km), E(MeV), m(10$^{-3}$eV)

$$\Rightarrow$$ Reactor disappearance measurements provide a straight forward method to measure θ_{13} with no dependence on matter effects and CP violation.
Nuclear Reactors as $\bar{\nu}_e$ Sources

What creates the reactor $\bar{\nu}_e$’s?

- Typical modern nuclear power reactor has a thermal power of:
 \[P_{\text{therm}} = 3.8 \text{ GW} \]
 - About 200 MeV / fission of energy is released in fission of ^{235}U, ^{239}Pu, ^{238}U, and ^{241}Pu.
 - The resulting fission rate, \(f \), is thus: \(f = 1.2 \times 10^{20} \) fissions/s
 - At 6$\bar{\nu}_e$ / fission the resulting yield is: \(7.1 \times 10^{20} \bar{\nu}_e / s \).

Using e^- spectra measurements for ^{235}U, ^{239}Pu, and ^{241}Pu
Can calculate the ν_e flux to 2-3%.

Example: ^{235}U fission

\[
^{235}_{92}\text{U} + n \rightarrow X_1 + X_2 + 2n
\]

Most likely A from \(\Rightarrow ^{94}\text{Zr} ~ ^{140}\text{Ce} \)

^{235}U fission

\(\rightarrow \) on average 6 n have to β-decay to 6 p to reach stable matter: \(^{94}_{40}\text{Zr} ~ ^{140}_{58}\text{Ce} \)

\(\rightarrow \) on average 1.5 ν_e are emitted with energy > 1.8 MeV
ν_e Flux Calculation

- To perform this calculation correctly one must
 - consider 235U, 238U, 239Pu, and 241Pu (> 99.5% ν_e flux),
 - account for all possible β branches.
 - correct for evolution of the reactor core over the fuel cycle.

- Measurement of the β spectra of fissioning of U-235, Pu-239, and Pu-241 samples by thermal neutrons performed at ILL, and converted to neutrino spectra.

- U-238 relies on theoretical calculation, 10% uncertainty (P. Vogel et al., PRC24, 1543 (1981)). U-238 contributes (7-10)% fissions.

Graphs:

Conversion from Electron to anti-Neutrino Spectra

- Old method (A. Schreckenbach et al.) used 30 effective β branches.

- Comparison of prediction to observation:

 Example:
 Goesgen Experiment
 Solid: Fit to Data
 Dashed: Prediction from β spectrum

 Another example Bugey 3 Exp: comparison to three different reactor spectrum models.

 Flux and Energy Spectrum known at ~2-3 % level
 → Reactors used as “calibrated sources” of ν’s

 Normalization error ~1.9%.
 Energy dependent (shape) error from 1.34% at 3 MeV to 9.2% at 8 MeV.
Reactor $\bar{\nu}$ Flux and “Reactor Anomaly”

Mueller et al. have refined method to go from measured 235U, 239Pu, and 241Pu β^- spectra (at ILL) to neutrino spectra.

New method uses all available information on measured nuclei from nuclear databases (~90% info from data bases, remaining ~10% fitted with 5 effective branches)

The result is a +3% increase in neutrino flux, on average.

For $L<100\text{m}$, accounting for correlations, results is $\frac{N_{\text{OBS}}}{N_{\text{EXP}}} = 0.937\pm0.027$

Possible bias or new physics at short baselines? Results are compatible with 4th, sterile neutrino state with $\Delta m^2 \sim 1\text{eV}^2$ and $\sin^2 2\theta \sim 0.1$ (i.e. MiniBooNE/LSND, etc).
Detection Technique

- The reaction process is inverse β-decay followed by neutron capture
 - Two part coincidence signal is crucial for background reduction.
 \[\bar{\nu}_e p \rightarrow e^+ + n \]
 - Positron energy spectrum implies the neutrino spectrum ($e^+e^-\rightarrow\gamma\gamma$)
 \[E_\nu = E_{vis} + 1.8 \text{ MeV} - 2m_e \]
- The scintillator may be doped with gadolinium to enhance capture
 \[n^m\text{Gd} \rightarrow n^{m+1}\text{Gd} \gamma \text{'s (8 MeV)} \]
- Cross accurate to 0.2%
 P. Vogel and J. Beacom,
 Phys.Rev.D60:053003,1999
 A. Strumia and F. Vissani,

Neutrinos with $E<1.8$ MeV are not detected.
Best Reactor θ_{13} Limit: CHOOZ Experiment

The current best limit for $\sin^2 2\theta_{13}$ is from the CHOOZ experiment: was built to find out if the atmospheric neutrino deficit was due to θ_{12}, and the measurement of theta-13 was an unexpected by-product.

- One detector experiment
 - Major systematic was reactor flux
- Large singles rate due to radioactivity of PMTs
 - Problem was scintillator reaching out to tubes
- Detector stability issues with scintillator
 - Light output decreasing with $\tau = 720$ days
- Small fiducial mass:
 - CHOOZ: 5 tons @ 1km, 5.7 GW
 - ~2.2 events/day/ton with 0.2-0.4 bkgd events/day/ton
 - ~3600 ν events total

<table>
<thead>
<tr>
<th>parameter</th>
<th>relative error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>reaction cross section</td>
<td>1.9%</td>
</tr>
<tr>
<td>number of protons</td>
<td>0.8%</td>
</tr>
<tr>
<td>detection efficiency</td>
<td>1.5%</td>
</tr>
<tr>
<td>reactor power</td>
<td>0.7%</td>
</tr>
<tr>
<td>energy released per fission</td>
<td>0.6%</td>
</tr>
<tr>
<td>combined</td>
<td>2.7%</td>
</tr>
</tbody>
</table>

CHOOZ: $R_{\text{osc}} = 1.01 \pm 2.8\% \text{ (stat)} \pm 2.7\% \text{ (syst)}$
$\sin^2 2\theta_{13} < 0.15$ for $\Delta m^2 = 2.5 \times 10^{-3}$ eV2

MINOS: For $\delta_{CP} = 0$, the allowed values $2\sin^2(2\theta_{13})\sin^2(\theta_{23})$ at 90% CL:
- Normal: 0 to 0.12, central value: 0.04
- Inverted: 0 to 0.19, central value: 0.08

T2K: For $\delta_{CP} = 0$, $\Delta m_{23}^2 = 2.4 \times 10^{-3}$ eV2, $\sin^2 \theta_{23} = 1$, allowed values $\sin^2 2\theta_{13}$ at 90% CL
- Normal: 0.03 to 0.28, central value: 0.11
- Inverted: 0.04 to 0.34, central value: 0.14

See dedicated talks:
- MINOS by J. Nelson
- T2K by F. Di Lodovico
Non-zero θ_{13} Evidence

Recent global analysis fit for $\sin^2\theta_{13}$ vs $\sin^2\theta_{12}$: Fogli et al. arXiv: 1106.6028[hep-ph]

Is θ_{13} non-zero and within a reach? → Need new sensitive experiments to confirm!

$\sin^2 2\theta_{13} = \begin{cases} 0.021 \pm 0.007 , \text{ old reactor fluxes} \\ 0.025 \pm 0.007 , \text{ new reactor fluxes} \end{cases}$ (1σ)

$\sin^2\theta_{13} = 0.082 \pm 0.028 \quad 0.098 \pm 0.028$
How can one improve on CHOOZ Experiment and possibly measure θ_{13}?

Add an identical near detector \rightarrow eliminate dependence on reactor flux. Optimize baseline \rightarrow near detector close to reactors, far detector at oscillation maximum.

Use larger detectors with reduced systematics uncertainties \rightarrow improved statistics, minimize systematics.

High power reactor sites \rightarrow improved statistics.

Reduce backgrounds \rightarrow go deeper and use active veto systems.

Stable scintillator \rightarrow eliminate aging effects.

\[P(\bar{\nu}_e \rightarrow \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} \sin^2 (1.27\Delta m^2_{31}L / E_\nu) \]

Survival Probability

Oscillations observed as a deficit of ν_e

Unoscillated flux observed here

$\sin^2 2\theta_{13}$
New Multi-detector θ_{13} Reactor Experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>GW_{th}</th>
<th>Distance Near/Far (m)</th>
<th>Shielding Near/Far (mwe)</th>
<th>Target Mass (tons)</th>
<th>Sensitivity $\sin^22\theta_{13}$ (90% c.l.)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Chooz (France)</td>
<td>8.4</td>
<td>390/1050</td>
<td>115/300</td>
<td>8/8</td>
<td>0.03</td>
<td>Data taking with far; near in 2012</td>
</tr>
<tr>
<td>RENO (Korea)</td>
<td>17.3</td>
<td>290/1380</td>
<td>120/450</td>
<td>16/16</td>
<td>0.02</td>
<td>Start mid-2011</td>
</tr>
<tr>
<td>Daya Bay (China)</td>
<td>17.4</td>
<td>360(500)/1985(1615)</td>
<td>260/910</td>
<td>$2\times2\times20$ (N) 4×20 (F)</td>
<td>0.01</td>
<td>Start mid-2012</td>
</tr>
</tbody>
</table>

- Many similarities in detector design and analysis strategy
- Differences in sensitivity come mainly from statistics (mass, reactor power), baseline optimization, and multiple detector sites (for Daya Bay)
Reactor Experiment for Neutrino Oscillations at YoungGwang in Korea

Courtesy : S. B. Kim
Completed RENO Detector (Feb. 2011)

- DAQ Electronics
- Calibration System
- Gd-LS filling for Target
- LS filling for Gamma
- Water filling for Veto

Liquid(Gd-LS/LS/MO/Water) Production & Filling (May-July 2011)

- Both near and far detectors are filled with Gd-LS, LS & mineral oil as of July 5, 2011.
- Veto water filling is 90% through, and will be done in the end of July, 2011. Take data August 2011!
RENO Sensitivity on \(\sin^2(2\theta_{13}) \)

- **Statistical errors (3 years of data taking with 70% efficiency)**

 Near : \(9.83 \times 10^5 \approx 10^6 \) (0.1% error)
 Far : \(8.74 \times 10^4 \approx 10^5 \) (0.3% error)

- **Systematic error** : \(<0.5\%\)

* **Sensitivity** : \(\sin^2(2\theta_{13}) > 0.02 \) at 90% C.L.

![Graph showing sensitivity and limits](image)
The Daya Bay experiment at the Daya Bay nuclear power complex in Shenzhen, China.

Courtesy: K-B. Luk, Y. Wang
Also see the dedicated talk on “Status of Daya Bay” by Zhimin Wang
Daya Bay Experiment

- DYB Near 2x20t overbdn: 95m
- Far 4x20t overbdn 355m
- LA Near 2x20t overbdn 112m
- 1615m
- 1985m

Ling Ao (2011)

Daya Bay

Daya Bay/Ling Ao Power Plant
- 4 cores, 11.6 GWth
- 2011: 6 cores, 17.4 GWth

HONG KONG
8 identical, 3-zone detectors: 2@Near and 4@Far

target mass: 20t GdLS
detector mass: \(\sim 110\) t
photosensors: 192 PMTs

- Calibration system
- Top reflector
- Inner acrylic vessel (3m \(\varnothing H\))
- Outer acrylic vessel (4m \(\varnothing H\))
- Stainless steel vessel (5m \(\varnothing H\))
- Bottom reflector
Installation of ADs at Daya Bay Site and Schedule

- AD and muon veto systems are installed in Daya Bay Hall, dry run data taken.

- Begin data taking with two ADs in the Daya Bay Hall in the summer of 2011.

- Begin data taking with all eight ADs in three halls in 2012 to reach a design sensitivity of $\sin^2\theta_{13}$ of 0.01 or better.
Double Chooz Reactor Experiment in Ardennes, France
Chooz-B Power Plant
- 2 cores, 8.6 GWth

Near 8.6t overbdcn 45m

Far 8.6t overbdcn 110m
Improved Detector Design

Calibration glove box
Outer Veto: plastic scintillator strips
Shielding: steel 15 cm thick
Inner Veto: 90 m3 of liquid scintillator
78 8” PMTs
Buffer: 110 m3 of non-scintillating mineral oil
390 10” PMTs
Gamma-Catcher: 22.3 m3 of liquid scintillator
Target: 10.3 m3 of liquid scintillator doped with 1 g/L of Gd
Far Detector Installation
Stable Data Taking since April 13th 2011

- >70 full days of physics (Physics Run Eff. 75%)
- Trigger rate 120 Hz - Trigger threshold < 0.6 MeV
- Calibration runs 10% of the time (light injection through embedded fiber)
- Outer Muon Veto & Source Calibration systems being commissioned
Physics Data: Muons and Michel Electrons

- ~40Hz of muons tagged by Inner Veto.
- ~10Hz of muons tagged by Inner Detector.
- Delayed coincidence method works well and tags Michel electrons:
 selection Criteria based on time since stopped muon (µs) and energy requirements.
- Only Statistical errors shown here.

Muon Rate in the Inner Veto: 39 Hz

Michel electron timing distribution

Lifetime 2.25 ± 0.13 µs
Physics Data: Neutrons and Accidental Background Events

-Muon-correlated events in Gd-capture time window (left plot).
-Mostly spallation neutrons: Peaks of neutron capture on:
 Hydrogen (2.2MeV)
 Gadolinium (~8MeV).

-Caveat: un-calibrated data shown.

-Stability of the radioactivity background singles rate in the delayed energy window, i.e. under
gadolinium peak (right plot):
 muon-correlated events vetoed.
Calibration Systems

- Embedded LEDs inside inner detector and inner veto
 → routinely used to monitor detector stability and PMT gains.
- Calibration source (γ, n, β) deployment devices:
 - Z-axis system,
 - Guide tubes,
 - Articulated Arm.
- Radioactive sources ready for deployment (Cs-137, Co-60 Ge-68, Cf-252).
Current Status and Expected Sensitivity

- More than 70 full days of physics collected.
- Detector stable: singles rates, muon-rates, and neutron-capture rates are as expected.
- Correlated backgrounds being studied.
- Oscillation analysis under way.
- "Reactor Anomaly" and DC analysis with the far Detector only strategy: use the experimental cross section per fission of Bugey-4 (apply burn-up correction).
- T2K’s central values to be addressed at 99% CL with 2011 data.

For FD only phase, assume $\sigma_{\text{norm}} = 2.5\%$ and $\sigma_{\text{uncorr}} = 2\%$

Relation of T2K result and pure $\sin^2 2\theta_{13}$ (Double Chooz)
Double Chooz 90 and 99% CL Sensitivity
Double Chooz Near Detector Status

-Near Site/Lab Construction started 29th April 2011.

-Lab expected to be ready for physics April 2012.

-Near Detector ready at the end of 2012.
Expected Sensitivities of Current Short-baseline Experiments

What to do if θ_{13} very small/large? See dedicated talks: S. Garwalla, H. Minakata
Note on Sterile Neutrinos

• “The Reactor Antineutrino Anomaly,” G. Mention et al., Phys. Rev. D83, 073006, 2011: Results are compatible with 4th, sterile neutrino state with $\Delta m^2 >\sim 1 \text{eV}^2$ and $\sin^2 \theta \sim 0.1$.

• Oscillations driven by the extra sterile neutrinos would produce a constant suppression at both near and far detectors (picture complicated if $\Delta m^2<1\text{eV}^2$).

• Data from near and far detectors can be used to probe θ_{13} and θ_{14}-driven effects.

See Dedicated Talks on Sterile vs: Bill Louis, C. Giunti
New Reactor Neutrino Experiments?

Atmospheric Range: New ideas might develop after current generation of experiments (Double Chooz, Daya Bay, RENO) is completed. -One of possible follow-up idea is “Triple Chooz” (P. Huber et. Al., arXiv: hep-ph/0601266).

Solar Range: An experiment with very large detector at oscillation maximum from powerful reactor complex would provide a very precise measurement of θ_{12} mixing; see for example H. Minakata et. Al., Phys.Rev. D71, 013005 (2005).

Sterile Neutrino Range: all current short-baseline experiments essentially sensitive -Near/far detector data from upcoming experiments should be studied closely. -A measurement of few MeV neutrinos at very short baseline (~10 m) would be interesting (note overlap with testing plutonium diversion at commercial reactor)

SCRAAM: The Southern California Reactor Antineutrino Anomaly Monitor, USA Nucifer (France)
DANSS (Detector of the Anti-Neutrinos based on the Solid Scintillator, Russia)
...
Summary

• Exciting time for reactor $\bar{\nu}$ experiments: Upcoming experiments will tell us much about θ_{13} (hopefully measure it!).
• Measurement of $\sin^22\theta_{13} > 0.01$ is key to planning leptonic CPV searches in long-baseline ν oscillation experiments.
• New reactor flux calculation and “anomaly”:
 – Near/far detector experiment is the right way to measure θ_{13}
 – Near detector data from upcoming experiments should be studied closely.
 – A measurement of few MeV neutrinos at very short baseline (~ 10 m) would be interesting.
• Future intermediate/long-baseline reactor antineutrino experiments may be used for a precision measurement of θ_{12} (using baseline from $\Delta m^2_{21} = \Delta m^2_{\text{sol}}$).
Backups
Double Chooz systematic uncertainties

<table>
<thead>
<tr>
<th>Source of Uncertainty</th>
<th>Chooz</th>
<th>Double-Chooz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor-induced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν flux and σ</td>
<td>1.9 %</td>
<td><0.1 %</td>
</tr>
<tr>
<td>Reactor power</td>
<td>0.7 %</td>
<td><0.1 %</td>
</tr>
<tr>
<td>Energy per fission</td>
<td>0.6 %</td>
<td><0.1 %</td>
</tr>
<tr>
<td>Detector-induced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid angle</td>
<td>0.3 %</td>
<td><0.1 %</td>
</tr>
<tr>
<td>Volume</td>
<td>0.3 %</td>
<td>0.2 %</td>
</tr>
<tr>
<td>Density</td>
<td>0.3 %</td>
<td><0.1 %</td>
</tr>
<tr>
<td>H/C ratio & Gd concentration</td>
<td>1.2 %</td>
<td><0.1 %</td>
</tr>
<tr>
<td>Spatial effects</td>
<td>1.0 %</td>
<td><0.1 %</td>
</tr>
<tr>
<td>Live time</td>
<td>------</td>
<td>0.25 %</td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 7 to 3 cuts</td>
<td>1.5 %</td>
<td>0.2 - 0.3 %</td>
</tr>
<tr>
<td>Total</td>
<td>2.7 %</td>
<td>< 0.6 %</td>
</tr>
</tbody>
</table>

Two "identical" detectors, Low bkg
Distance measured @ 10 cm + monitor core barycenter
Precise control of detector filling
Accurate T control (near/far)
Same scintillator batch + Stability
Identical detectors and monitoring
Special electronic systems and monitoring
Simplified cuts due to detector design
From Detection Cross Section to $\bar{\nu}_e$ Energy Spectrum

$$\sigma_{tot}(E_e) \approx \frac{2\pi^2 h^3}{m_e^5 c^7 f \tau_n} \cdot p \cdot E_e \approx \frac{p \cdot E_e}{1 \text{MeV}^2} \cdot 10^{-43} \text{ cm}^2$$

In lowest order, assuming infinitely heavy neutron. No nuclear matrix element involved. Cross section directly linked to measured neutron life time and phase space. Use cross section by Vogel & Beacom:

σ to order $1/M$, radiative corrections, weak magnetism \rightarrow few % correction Cross section accurate to 0.2%

Neutrinos with $E<1.8$ MeV are not detected
Reactor Measurements of θ_{13}

- $3.8 \text{ GW} \rightarrow 7 \times 10^{20} \nu_e/s$
 - ~800 events / yr / ton at 1500 m away
- Reactor spectrum peaks at 3 to 4 MeV
- Oscillation Max. for $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$
 - at $L \sim 1000 - 1500$ m
RENO Detector Construction & Closing (Jan. 2011)
Summary of RENO Status

• Construction of both near and far detectors are completed in Feb. 2011.

• All the liquids including Gd loaded liquid scintillator are produced and filled as of July 5, 2011.

• Dry runs were performed to check PMT and DAQ in March ~ May, 2011.

• Background data-taking has been made since the middle of June, 2011.

• Commissioning shifts and calibration efforts are on progress.

• Regular data-taking is expected to begin from August 1, 2011.
Daya Bay Anti-neutrino Detector Assembly