Long-Baseline Neutrino Beams at Fermilab

Jim Strait, Fermilab NuFact '11 2 August 2011

Existing Fermilab Neutrino Beams

NuMI

BNB

I.S. CONTRACTOR

13

Planned New Neutrino Beam

LBNE

NuMI

NB

13

BN

The state of the second

Beams of several baselines

- Long Baselines (oscillation physics)
 - NuMI to MINOS: L/E \simeq 735 km / 3 GeV \simeq 250 km/GeV
 - NuMI to NOvA: L/E \cong 810 km / 2 GeV \cong 400 km/GeV - LBNE L/E \cong 1300 km / 2.5 GeV \cong 430 km/GeV
- Short Baseline (oscillation physics)
 - BNB to MiniBoone:
 0.6 GeV ≅ 1 km/GeV
- Shorter Baseline (experiments assume no oscillation effects)
 - NuMI to MINERvA: GeV \cong 0.3 km/GeV
 - BNB to SciBooNE: 0.6 GeV \simeq 0.15 km/GeV

NuFact'11, 2 August 2011 -- J.Strait

🛟 Fermilab

 $L/E \simeq 0.6 \text{ km}/$

 $L/E \simeq 1 \text{ km} / 3$

 $L/E \simeq 0.1 \text{ km}/$

Beams of several baselines

- Long Baselines (oscillation physics)
 - NuMI to MINOS: L/E \cong 735 km / 3 GeV \cong 250 km/GeV
 - NuMI to NOvA: L/E \cong 810 km / 2 GeV \cong 400 km/GeV - LBNE L/E \cong 1300 km / 2.5 GeV \cong 430 km/GeV
- Short Baseline (oscillation physics)
 - BNB to MiniBoone:
 0.6 GeV ≅ 1 km/GeV
- Shorter Baseline (experiments assume no oscillation effects)
 - NuMI to MINERvA:
 GeV ≅ 0.3 km/GeV
 - BNB to SciBooNE: 0.6 GeV \simeq 0.15 km/GeV

NuFact'11, 2 August 2011 -- J.Strait

🛟 Fermilab

 $L/E \simeq 0.6 \text{ km}/$

 $L/E \simeq 1 \text{ km} / 3$

 $L/E \simeq 0.1 \text{ km}/$

NuMI Beam

See also talks by Jeff Hartnell, Phil Adamson, Mathew Meuther

Beam Layout

 Optimized for high energy and tuneability (designed before oscillation parameters were known)

NuMI Beam – Tuneability of on-axis spectrum

• Beam energy can be change by moving the target in (low energy) and out (high energy) of first horn.

 MINOS running has mainly been in the LE tune.

Neutrino Mode

Antineutrino Mode

NuMI Off-Axis Beam for NOvA

 NOvA will operate with ME tune, 14 mrad offaxis => 2 GeV narrow band beam.

🛟 Fermilab

NuMI Off-Axis Beam for NOvA

 NOvA beam has excellent purity in terms of v_e background in oscillation region.

NuMI Off-Axis Beam for NOvA

 NOvA beam has excellent purity in terms of v_e background in oscillation region.

NuMI Beam Power – Maximum achieved for 1 hour

- Beam power shows increasing trend over last few months
- Exceeded 400 kW in MI for 1 hour in "normal" running
- Will push again when target is installed

P.Adamson

🛟 Fermilab

MINOS meeting June 13 2011

NuMI Target History

	Max. Proton/pulse	Max. Beam Power	Integrated Protons on Target
Target Design specification	4.0e13 p.p.p. <i>at 120 GeV</i>	400 kW	3.7 e20 p.o.t. or 1yr minimum lifetime
1 st target	3.0 e13 p.p.p.	270 kW	1.6 e20 p.o.t.
2 nd target	4.0 e13 p.p.p.	340 kW	6.1 e20 p.o.t.
3 rd target	4.4 e13 p.p.p.	375 kW	3.1 e20 p.o.t.
4 th target	4.3 e13 p.p.p.	375 kW	0.2 e20 p.o.t.
5 th target	4.0 e13 p.p.p.	337 kW	1.3 e20 p.o.t.
6 th target	3.5 e13 p.p.p.	305 kW	0.2 e20 p.o.t.

P.Adamson

MINOS meeting June 13 2011

NuMI Target History

Target Summary

arget	Fate		
VT-01	Zombie target – now running		
NT-02	~15% Radiation damage to graphite		
NT-03	Failure in ceramic at upstream end of can		
NT-04	Unknown water leak, Be windows destroyed		
VT-05	Water leak at DS turna		
NT-06	Water leak upstream		
		NI-03	

NT-06

P.Adamson

🛟 Fermilab

NuMI Beam Power Upgrades for NOvA

- Injection and Slip Stacking in Recycler Ring
 - Cut ²/₃ second for injection from cycle
 - 12 batches from Booster instead of 11
- Single turn transfer to MI
- Ramp to 120 GeV
 - Faster ramp: 1.333 second
 - All 12 to NOvA target: ~4.9e13 706 kW
- 1.333 second cycle
 - · 9 Hz demand on Booster
 - 12 consecutive pulses
 - 1.4e17/hour
- Target Station:
 - New target design
 - New Horn configuration

🛟 Fermilab

LBNE Beam

- We need a new beamline for LBNE:
 - Need longer baseline (see my WG1 talk earlier today) Longest baseline along NuMI direction ~ 1000 km (where beam axis is ~15 km above ground)
 - Need to plan for higher-power Project X beam
 Power limitation of NuMI line is certainly << 2 MW
 - Need beam optimized for lower energy and smaller v_e component => shorter, wider decay pipe.
 - Need beam pointed to Homestake / Sanford Lab

LBNE Beam – High-Level Requirements

- Beam pointed to Homestake => 1300 km baseline
- Broad-band beam, covering 1st and 2nd maxima (2.5 and 0.8 GeV)
- Minimize high energy tail above ~5 GeV
- Minimize v_e and "wrong-sign" v_{μ}
- Tunable => proton beam 60 < E < 120 GeV
- Design for initial power = 700 kW, upgradeable to >2 MW
- Beam and Near Detector on Fermilab site
- Stringent radiation safety requirements
- Minimize cost!

LBNE Beamline Major Alternatives

🛟 Fermilab

LBNE Beamline Major Alternatives

‡ Fermilab

LBNE Beamline Major Alternatives

FLEV, 407

LBNE Expected Beam Spectrum

The LBNE design selected for physics studies maximizes the $\nu_{\rm e}$ appearance signal at 1300km.

Target: Carbon target, r=0.6cm, I=80cm, $\rho = 2.1$ g/cm³. Located -30cm from Horn1.

Horns: 2 Al NuMI Horns, 6m apart, 250 kA. Decay Pipe: r=2m, I=280m, He filled/evacuated.

Aug 2010 Neutrino Beam Aug 2010 Anti-Neutrino Beam Aug 2010 Anti-Neutrino Beam Aug 2010 Anti-Neutrino Beam Aug 2010 Anti-Neutrino Beam Mug 2010 Anti-Neutrin

LBNE Expected Beam Spectrum

The LBNE design selected for physics studies maximizes the $\nu_{\rm e}$ appearance signal at 1300km.

Target: Carbon target, r=0.6cm, I=80cm, $\rho = 2.1$ g/cm³. Located -30cm from Horn1.

Horns: 2 Al NuMI Horns, 6m apart, 250 kA. Maybe a little more Decay Pipe: r=2m, I=280m, He filled/evacuated optimistic that what we

Aug 2010 Neutrino Beam

Aug 2010 Anti-Neutrino Beam

LBNE Beamline Design Issues

- Radiation safety with above grade beam
 - Prompt radiation at site boundary
 - Tritium isolation with decay pipe and absorber partially in the aquifer.
- Decay pipe length and diameter (cost vs. performance, space relative to site boundary)
- Target lifetime assume that this will be solved by NOvA for 700 kW beam, but work is required towards 2 MW
- Difficult to obtain substantial flux at 800 MeV = 2nd oscillation max
 - Lower beam energy helps
 - Innovative target designs?

Radiation / Tritium Safety with Shallow Beam

7" 4" (2.2M

Robust geomembrane system required to isolate aquifer from Tritium in decay pipe shielding. (Landfill technology)

LBNE Beam – Vary decay pipe dimensions

Decay pipe length

Decay pipe diameter

🛟 Fermilab

LBNE Beam – Flux at 2nd Oscillation Maximum

🛟 Fermilab

Flux at 2nd Max – Effect of Proton Energy

Flux at 2nd Max – Effect of Proton Energy

Flux at 2nd Max – Innovative Targets?

Hybrid target design: NEW

Flux at 2nd Max – Innovative Targets?

Summary

- NuMI Beam is operating at a typical weekly average power of 250 kW, including downtime Peak hourly average power = 400 kW.
- NOvA upgrades will increase beam power to 700 kW
- LBNE beam is under design.
 - Higher power capability to > 2 MW
 - Optimizing spectrum for 1300 km baseline
 - Studying shallow options and different decay pipe dimensions for cost reduction.

More details in Vaia Papadimitriou's talk in WG3 earlier today.

Many thanks to those who helped me prepare this talk and from whom I took slides

