

Search for Coherent Muon-to-Electron Transition (COMET) at a sensitivity better than 10⁻¹⁶

Richard D'Arcy
On behalf of the COMET collaboration

NuFact '11 - 01/08/11

Motivation – Lepton Flavour Violation

- Lepton flavour conservation is a fundamental property of the Standard Model (SM).
- LFV of neutrinos has been confirmed.
- LFV of charged leptons is unobserved.
- \circ The SM predicts a branching ratio for LFV processes of O(10⁻⁵⁰). An example of such a process is:

$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{1i}^2}{M_W^2} \right|^2 < 10^{-54}$$

- New Physics models (SUSY, GUTs, etc.) increase this BR dramatically to $\approx 10^{-15}$.
- LFV experiments may therefore provide a complimentary probe to beyond SM physics at the LHC, having reach beyond the TeV scale.

Motivation – Charged Lepton Flavour Violation

process	present limit	near future	comments
$\mu \rightarrow e \gamma$	1.2 x 10 ⁻¹¹	10 ⁻¹³	MEG at PSI
μ→eee	1.0 x 10 ⁻¹²	10 ⁻¹⁴ - 10 ⁻¹⁵	PSI and MUSIC ?
$\mu N \rightarrow e N (in Ti)$	7 x 10 ⁻¹³	10 ⁻¹⁸	PRISM
$\mu N \rightarrow e N (in Al)$	none	10 ⁻¹⁶	COMET and Mu2e
$\tau \rightarrow e \gamma$	1.1 x 10 ⁻⁷	10 ⁻⁸ - 10 ⁻⁹	super B factory
τ→eee	2.7 x 10 ⁻⁷	10 ⁻⁸ - 10 ⁻⁹	super B factory
$\tau \rightarrow \mu \gamma$	6.8 x 10 ⁻⁸	10 ⁻⁸ - 10 ⁻⁹	super B factory
τ→μμμ	2 x 10 ⁻⁷	10 ⁻⁸ - 10 ⁻⁹	super B factory

- \circ μ ->e γ and μ ->eee processes suffer heavily from accidental backgrounds of daughter particles and are thus limited to O(10⁻¹³).
- Therefore conversion experiments, utilising the process

$$\mu^{-} + N(A, Z) \to e^{-} + N(A, Z)$$

are required as they search for single, monoenergetic signal electrons.

○ The large number of muons available ($\approx 10^{18} \, \mu/yr$) results in a 'high' sensitivity to LFV.

New Physics search rating

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models ★★★ signals large effects, ★★ visible but small effects and ★ implies that Altmannshofer, Buras, Gori, Paradisi, Straub the given model does not predict sizable effects in that observable.

0909.1333v2 [hep-ph] 26 Jan 2010

What is muon-to-electron conversion?

Muon-to-electron conversion

$$\mu^- + (A, Z) \to e^- + (A, Z)$$

Beyond Standard Model Process

Other backgrounds:

- o Prompt background
- Muon decay in flight (DIF)
- o Beam electrons

Signal:

A single mono-energetic electron with energy

$$E_e = m_{\mu} - B_{\mu}(\text{Al}) \simeq 105 \text{MeV}$$

Current status of cLFV

<u>SINDRUM-II at PSI (target – Au)</u>

Muon beam intensity ~ 10⁷⁻⁸/sec
Upper limit of 7 × 10⁻¹³

✓ published result 2004

MEG at PSI ($\mu^+ \rightarrow e^+ \gamma$) Upper limit of 2.4 × 10⁻¹² \checkmark published result 2011

COMET at J-PARC (target – Al) Muon beam intensity $\sim 10^{11}/\text{sec}$ Proposed sensitivity of $< 10^{-16}$

(SINDRUM results published in 2004)

Improvements (background rejection)

Beam-related backgrounds

Beam pulsing with separation of 1µsec

proton extinction = #protons between pulses/#protons in a pulse < 10⁻⁹

vastly decreases prompt background

Muon DIO background

Curved solenoids and DIO beam scrapers

improve electron energy resolution

Muon DIF background

Curved solenoids for momentum selection

eliminate energetic muons (>75 MeV/c)

The COMET (J-PARC - E21) Experiment

- COherent Muon-to-ElectronTransition experiment.
- COMET / PRISM is a two stage experiment with a proposed sensitivity to cLFV of 10⁶ times better than current limits.
- Unique curved solenoidal beamline design for momentum selection.
- Pion capture and muon transport by novel superconducting solenoid system.

COMET Collaboration

Mu2e at Fermilab

- Similar sensitivity to COMET with similar ideas (curved solenoids yet with slightly different geometry).
- Built on the ideas and groundwork of the MECO experiment.
- Collaborations between COMET and Mu2e are prosperous (e.g. radiation damage to superconductors R&D)

Design Differences between Mu2e and

COMET

Mu2e

COMET

Proton beam

Muon beamline

Electron Spectrometer

Fermilab (pulsed)

S-shape

Straight solenoid

J-PARC (pulsed)

C-shape

Curved solenoid

Proton Beam (pulsed)

- A pulsed proton beam is needed to reject beam-related prompt background.
- o Requirements:
 - pulse separation > 1 μsec (muon lifetime in Al is 880ns)
 - pulse width < 100 nsec
- O Beam parameters:
 - beam power 56 kW
 - beam energy 8 GeV
 - avg. current 7 μA

O Beam extinction:

$$R_{Ext} = \frac{\text{number of protons between pulse}}{\text{number of protons in a pulse}} < 10^{-9}$$

Proton Beam (extinction)

- Muonic lifetime is dependent on target material (Z number). For Al the lifetime is 880ns.
- O Bunch structure:
 - separation 1.3 μs
 - length 100 ns
 - protons/bunch 1.2x10⁸
 - extinction 10⁻⁹
- Without extinction we would encounter problems with prompt background from proton interactions. This problem is reduced with bunching.

Proton Beam (extinction measurement)

Bunched slow extraction:

- Measurements taken from the J-PARC secondary beamline – K1.1BR
- Extinction:

$$(5.4 \pm 0.6) \times 10^{-7}$$

Proton Beam (extinction measurements)

Abort beamline measurements

Secondary beamline measurements Consistent with O(10⁻⁷) in the J-PARC MR

Double injection kicking

External extinction device

× additional factor of O(10⁻⁶)

× additional factor of O(10⁻³)

The COMET collaboration is confident of achieving proton extinction of $< O(10^{-9})$

Curved solenoids

 In a curved solenoid the centre of the helical trajectory of a charged particle drifts towards the perpendicular direction to the curved solenoid plane.

$$D = \frac{p}{qB}\theta_{bend}\frac{1}{2}\left(\cos\theta + \frac{1}{\cos\theta}\right)$$

D: drift distance

B: Solenoid field

 θ_{bend} : Bending angle of the solenoid channel

p: Momentum of the particle

q: Charge of the particle

 θ : $atan(P_T/P_L)$

 A compensating magnetic field is introduced, according to:

$$B_{comp} = \frac{p}{qr} \frac{1}{2} \left(\cos \theta + \frac{1}{\cos \theta} \right)$$

p : Momentum of the particle

q : Charge of the particle

r: Major radius of the solenoid

 θ : $atan(P_T/P_L)$

This can be used for charge and momentum selection.

Curved solenoids (muon transport)

- Muon transport consists of two 90° bent solenoids:
 - magnetic field 3 T
 - total bend 180°
 - radius of curvature 3 m
- Designed to eliminate muons with high momentum.
- Momentum selection proportional to bending angle.

Curved solenoids (muon transport)

OCOMET simulation method:

- protons incident on a graphite target (MARS)
- subsequent particle distribution tracked through a model of the experiment (Geant4)

No high energy muons after 180° bend selection

Curved solenoids (electron transport)

- Electron transport consists of one
 180° bent solenoid:
 - magnetic field 1 T
 - total bend 180°
 - radius of curvature 2 m
- Designed to eliminate:
 - positively charged particles (e.g. protons from muon capture)
 - negatively charged particlesp < 60 MeV/c
- And select signal electrons of p > 60 MeV/c.
- Detector rates are drastically reduced as a result of this.

Curved solenoids (electron transport efficiency)

- The plot of transmission efficiency is produced with the DIO blockers placed 20cm below the beamline axis.
- The collimators and blockers require optimisation to achieve a detector rate of 1-10 kHz within the timing window.

- Prompt background is small due to extinction, therefore other backgrounds dominate (DIO, DIF, etc.).
- The electron spectrometer provides huge suppression of DIO electrons (augmented by a series of DIO blockers).

Sensitivity and Background

Sensitivity:

Single event sensitivity $=(N_p \cdot N_{\mu/p}^{stop} \cdot f_{cap} \cdot A_{\mu ext{-}e})^{-1}$	2.6×10^{-17}
90% confidence level upper limit	6.0×10^{-17}
Events per 1×10^{-16} BR	3.8

Background:

Radiative Pion Capture	0.05
Beam Electrons	$< 0.1^{\ddagger}$
Muon Decay in Flight	< 0.0002
Pion Decay in Flight	< 0.0001
Neutron Induced	0.024
Delayed-Pion Radiative Capture	0.002
Anti-proton Induced	0.007
Muon Decay in Orbit	0.15
Radiative Muon Capture	< 0.001
μ^- Capt. w/ n Emission	< 0.001
μ^- Capt. w/ Charged Part. Emission	< 0.001
Cosmic Ray Muons	0.002
Electrons from Cosmic Ray Muons	0.002
Total	0.34

Status

- Proton extinction in the secondary beamline at J-PARC has been measured.
- Design of superconducting solenoid cavities has been realised.
- A prototype of the first ever superconducting pion capture solenoid has been built at Osaka University. Experiments (MuSIC, etc.) are currently in progress, utilising this and the first 36° of muon transport solenoids.
- Conceptual design report (CDR) submitted, receiving Stage-1 approval as E21 at J-PARC PAC, 2009 - vindication of physics motivation and feasibility.
- Stage-2 approval will be assessed in the coming months following submission of a technical design report (TDR) to J-PARC PAC.

Summary

- Physics motivation for cLFV is robust, allowing a probe of beyond-LHC energy scales.
- \circ Muon-to-electron conversion provides the current best chance of observing cLFV with > $10^{18}~\mu/yr.$
- COMET/conversion experiments can achieve sensitivity beyond 10⁻¹³ because:
 - Pulsed proton beam for background rejection
 - Curved solenoid magnets for momentum rejection and signal selection
- New collaborators are welcome!